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1. Introduction

Be aware that this is still work in progress. Any comment is more than welcome.
This notes are based strongly in the books of D. Gilbarg and N. S. Trudinger [3], L. Nirenberg [5],

L. C. Evans [2]. The aim is to give a very quick introduction to a priori estimates to prove existence
of solutions for elliptic second order equations. When we are studying the Laplace and Poisson’s
problems, one obtain important inequalities regarding to the solutions, for instance the maximum
principle for harmonic functions, and eventually estimates involving higher order derivatives. For
more general equations the maximum principle can be obtained avoiding the potential theory, and
we can get similar inequalities. From topology of Banach spaces and functional analysis it is possible
to get existence results for solutions of the Dirichlet problem based on these inequalities. In the
case of linear equations, the Schauder estimates implies the existence results for a wide variety of
problems depending on the properties of the coefficients of the differential operator. Then by means
of the continuity method, one can establish the invertibility of such operator from a known one. For
quasilinear equations, the problem is more complicated, and topological methods like degree theory
and fixed point results are extended to infinite dimensional Banach spaces. The Leray-Schauder fixed
point theorem in Banach spaces gives the existence theory for the Dirichlet problem of a large class
of quasilinear equations. Finally we say something about the fully nonlinear case and how continuity
method can be also applied if certain a priori estimates are established.

This notes are not self-contained and there are many different results regarding the influence of
the geometry of the domain Ω and its boundary ∂Ω to the solution of the Dirichlet problem that are
not mentioned.

We will study second order partial differential equations that can be linear, or not, depending on
some properties of its coefficients. For instance let Ω ⊂ Rn be a domain (open and connected), Rn×n

the set of all square symmetric matrices n by n. A second order equation can be written in general
as a function F : Ω× R× Rn × Rn×n → R
(1) F [u] = F (x, u,Du,D2u) = 0.

In case that the coefficients of highest order depend only on (x, u,Du) ∈ Ω × R × Rn, then the
equation is called quasi-linear, and can be written as

(2) Qu = aij(x, u,Du)Diju+ b(x, u,Du).
1
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A quasi-linear equation such that the highest order term is linear is called semi-linear. If all
coefficients are depending only on x ∈ Ω we refer to it as a linear equation

(3) Lu = aij(x)Diju+ bi(x)Diu+ c(x)u.

A fully nonlinear equation is a second order equation F that cannot be written as a quasi-linear
equation.

Quasilinear equations are called elliptic if the coefficient matrix [aij] is positive definite, more
over, if λ and Λ denote the minimum and maximum eigenvalues of [aij], then the equation is elliptic
if λ ≥ 0, strictly elliptic when λ ≥ ε > 0, and uniformly elliptic Λ/λ is bounded. A fully
nonlinear equation F is elliptic if the matrix Fij = ∂F/∂uij is positive definite.

The Hölder space Ck,α(Ω̄), with exponent 0 < α < 1 is the Banach space of functions f with
norm

(4) |f |Ck,α(Ω) = |f |Ck(Ω) + max
|j|=k
|Djf |Cα(Ω),

where

(5) |f |Ck(Ω) =
k∑
j=0

max
|r|=j

sup
x∈Ω
|Drf | ; |f |Cα(Ω) = sup

x 6=y,
x,y∈Ω

|f(x)− f(y)|
|x− y|α

.

Hölder spaces are Banach spaces with the norm (4) when functions are defined in an open bounded
set Ω.
Remark. The following semi-norms are also used:

Non-dimensional norms: If Ω is bounded and d = diam Ω we define:

(6) |f |′Ck(Ω) =
k∑
j=0

dj max
|r|=j

sup
x∈Ω
|Drf | ; |f |′Ck,α(Ω) = |f |′Ck(Ω) + dk+α max

|j|=k
|Djf |Cα(Ω).

Interior norms: dx = dist (x, ∂Ω) and dx,y = min {dx, dy}:

|f |∗Ck(Ω) =
k∑
j=0

max
|r|=j

sup
x∈Ω

djx|Drf | ; [f ]∗Ck,α(Ω) = sup
x 6=y;|β|=k

dk+α
x,y

|Dβf(x)−Dβf(y)|
|x− y|α

.

|f |∗Ck,α(Ω) = |f |∗Ck(Ω) + [f ]∗Ck,α(Ω).

(7)

Arzela-Ascoli Theorem. This is a fundamental result in mathematical analysis. It gives the
necessary and sufficient conditions for a sequence of functions to have a uniformly convergent subse-
quent.

Theorem 1 (([1],appx. D)). Suppose that {fk}∞k=1 is a sequence of functions defined on a domain
Ω ⊂ Rn such that

(1) It is uniformly bounded, i.e. there is a constant M > 0 such that |fk(x)| ≤ M for all x ∈ Ω
and all k.

(2) It is uniformly equicontinuous: for each ε > 0, there exists δ > 0 such that if |x− y| < δ then
|fk(x)− fk(y)| < ε, for x, y ∈ Ω and all k.

Then there exists a sub-sequence {fkj}∞j=1 ⊂ {fk}∞k=1 and a continuous function f such that fkj → f ,
uniformly on compact subsets of Ω.

Some of the applications of the Arzela-Ascoli theorem we will be using are presented in the following
examples.

Example 2. Let {fk} be a uniformly bounded sequence of differentiable functions defined in a compact
set K ⊂ Rn. If {Dfk} is uniformly bounded by M > 0, then by the mean value theorem we have

(8) |fk(x)− fk(y)| ≤ sup
z∈K
|Dfk(z)| |x− y| ≤M |x− y|.
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Note that this proves fk to be actually a sequence of Lipschitz functions with the same Lipschitz
constant. This is equivalent to equicontinuity of the family. Then by the Arzela-Ascoli theorem the
sequence fk has a subsequence that converges uniformly on compact sets. The limit function is also
Lipschitz with same constant M .

Example 3. Let {fk} be a uniformly bounded sequence of continuous functions defined in a compact
set K ⊂ Rn and such that fk ∈ Cα(K) for all k, and even more, there is a positive constant M > 0
such that |fk|Cα(K) ≤M , for all k. Then again, this is equivalent to equicontinuity of the family and
by the Arzela-Ascoli theorem the sequence fk has a subsequence that converges uniformly on compact
sets.

2. Ellipticity

Consider the following example of partial differential operator in R2:

F = a11u11 + a12u12 + a22u22 + b1u1 + b2u2 + cu,

then, the matrix F ij is given by

(F ij) =

 a11
a12

2a12

2
a22

 ,

hence, F is elliptic if

det(F ij) = a11a22 −
a2

12

4
≥ 0,

or equivalently
4a11a22 − a2

12 ≥ 0.

It is not a trivial matter to generalise the concept of ellipticity to a higher order system of N
equations for N functions u1, . . . , uN . Here we present the notion of non-characteristics and how it
can help us to understand ellipticity from this point of view.

In general one can consider the system of equations

Fi

(
x, u1, . . . , uN ,

∂kuj

∂xk11 · · · ∂xknn
, . . .

)
= 0,

with i, j = 1, 2, . . . , N , and k = k1 + · · ·+ kn where 1 ≤ k ≤ nj, that is, for each function uj there is
a highest order derivative nj appearing in the system.

The semilinear case. Consider the case where each Fi is linear in the highest order derivative,
then we can write the i - th equation as

(9)
N∑
j=1

∑
k1+...+kn=nj

ak1 ··· knij

∂njuj

∂xk11 · · · ∂xknn
+Gi

(
x, u1, . . . , uN ,

∂muj
∂xm1

1 · · · ∂xmnn
, . . .

)
= 0,

here, 1 ≤ m ≤ nj − 1.

Definition 4. Let p ∈ Rn, and S be a smooth hypersurface containing p. Suppose that u1, . . . uN
are functions satisfying the system of semilinear system of equations (9). Suppose that the values of
the functions uj and the values of their derivatives up to order nj − 1 are known on the surface in
a neighbourhood around p. If we can calculate the nj -th order derivatives of uj at the point p, then
the surface S is called non-characteristic at p with respect to the semimlinear system.

Suppose that y1, . . . , yn are new coordinates around the point p, such that, around a neighbourhood
of p, the surface S is given by y1 = 0.

Observe that, since for the function uj we know its nj − 1 derivatives, then it is possible to obtain
the nj -th derivative in directions which are tangent to the surface.

Then the problem is now to compute the nj -th order derivatives
∂njuj

∂y
nj
1

. By the chain rule one sees

that

(10)
∂njuj

∂xk11 · · · ∂xknn
=
∂njuj
∂y

nj
1

(
∂y1

∂x1

)k1
· · ·
(
∂y1

∂xn

)kn
+

derivatives of order nj
mixed with

tangent directions
+ lower order terms.
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Making use of the equationg (9), we obtain

(11)
N∑
j=1

∑
k1+...+kn=nj

ak1 ··· knij

∂njuj
∂y

nj
1

(
∂y1

∂x1

)k1
· · ·
(
∂y1

∂xn

)kn
+ · · ·+Gi = 0.

These equations can be solved for
∂njuj

∂y
nj
1

if and only if the determinant of the N ×N matrix

(12) mij =
∑

k1+...+kn=nj

ak1 ··· knij

(
∂y1

∂x1

)k1
· · ·
(
∂y1

∂xn

)kn
,

is different from zero at the point p ∈ S.
Recall that around p ∈ S, the surface S is the level set y−1

1 {0}, hence, the gradient

(13) Dy1(p) =

(
∂y1

∂x1

∣∣∣∣
p

,
∂y1

∂x2

∣∣∣∣
p

, . . .
∂y1

∂xn

∣∣∣∣
p

)
is a multiple of the unit vector νp := (ν1, . . . , νn) normal to the surface S at p.

The characteristic determinant is the function H : Rn → R given by

(14) H(x) = det (mij(x)) = det

 ∑
k1+...+kn=nj

ak1 ··· knij xk11 · · ·xknn

,
and the equation H(x) = 0 is called the characteristic equation.

Definition 5. S is said characteristic at p if the characteristic equation is satisfied by the normal
ν = (ν1, . . . , νn) to S at p, and it will be simply called a characteristic surface if it is characteristic
at every point.

Then the system (9) is called elliptic is the characteristic equation has no real solution other than
the trivial, i.e., H(x) = 0 only for x = 0.

3. Maximum principle for the Laplace equation

This is one of the most important and fundamental results of partial differential equations of the
elliptic type. There are many important properties of PDE’s that follows if the maximum principle
holds and the idea is the following: consider a smooth function u : Ω ⊂ Rn → R . The symmetric
matrix of second order derivative has important information, for instance, one knows that if there
is a local maximum at a point x0 ∈ Ω then the Hessian matrix D2u(x0) is negative definite, and
the graph of u looks locally concave, while if x0 is a local minimum the hessian matrix D2u(x0) is
positive definite, and the graph of u in this case looks locally convex. Since ∆u = Tr(Du2), the
condition ∆u > 0 in Ω suggests that the graph of the function u looks (in some sense) convex.

Proposition 6. If ∆u > 0 in Ω, then u attains its maximum value at the boundary ∂Ω.

Proof. If there is a local maximum of u ∈ C2(Ω) at x0 in the interior of Ω we would have ∂2u
∂x2i

(x0) ≤ 0

for all i = 1, 2, . . . , n, which leads to a contradiction. �

Proposition 7. If ∆u ≥ 0 in Ω, then u attains its maximum value at the boundary ∂Ω. Further
more, for any ball Br(x0) ⊂ Ω it holds that u(x0) ≤ maxx∈∂Br(x0) u(x).

Proof. On the contrary lets assume there is r > 0 such that Br(x0) ⊂ Ω and u(x0) > m, where
m := maxx∈∂Br(x0) u(x). Now define the function

(15) U(x) := u(x) +
α

r2
|x− x0|2,

where α > 0 is a constant to be determine later. Note that U(x0) = u(x0). On the other hand if
|x− x0| = r we have

(16) U(x) = u(x) + α < m+ α.
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Choose any 0 < α < u(x0)−m and then for |x− x0| = r it holds

(17) U(x) < u(x0).

We also note

(18) ∆U(x) = ∆u(x) +
2αn

r2
> 0,

which contradicts the previous proposition. �

4. The Poisson’s equation in domains of Rn: Kellog’s Theorem.

The most important elliptic equation is the Laplace equation ∆u = 0. The solutions of this
equation are called harmonic functions. When the right hand side is different from zero, ∆u = f ,
it is called Poisson’s equation.The following points outline one path to establish the solvability of
the Laplace and Poisson’s equations using the so called Perron’s method in bounded domains of the
Euclidean space:

• First we will start with Poisson’s equation in the unbounded Rn by means of the Newton’s
kernel.
• After learning some properties of the Newton kernel and convolution with functions, we obtain

the Green’s representation formula. As an application we also obtain the Green’s function in
a ball for the Laplace equation.
• The solution of the Laplace equation in the ball is given explicitly by the Poisson’s integral

formula.
• Then we stress that in the ball, a solution of the Laplace equation, has certain regularity.
• To solve the Laplace equation in bounded domains Ω we make use of Perron’s method for

subharmonic functions.
• Then the solvability of the Dirichlet problem for Laplace equation regarding the boundary

data is addressed.
• Poission’s equation in bounded domains will follow from Laplace equation, using suitable

function in Newton’s kernel, and Perron’s method with the corresponding boundary data.
• We keep developing estimates for the solutions and establish Kellogg’s theorem. This kind

of a priori estimates will be further developed in the next section to establish existence of
solutions for linear equations avoiding potential theory, i.e., by obtaining a priori estimates.

We are basically using the so called Potential theory in the ball, and then Perron’s method to
get a solution with certain regularity. This is also the underlying idea for proving the existence of a
solution in the viscosity sense for fully nonlinear equations.

We start by considering the Poission’s equation in Rn namely

(19) ∆u = f.

For compactly supported functions f , an explicit solution can be obtained using the Newton’s kernel

(20) Γ(x) =

{
c|x|2−n, n ≥ 3
−c log |x|, n = 2

,

and then the solution is given by the convolution:

(21) u(x) = (Γ ∗ f)(x) :=

∫
Γ(x− y)f(y)dy.

Note that the convolution is commutative Γ ∗ f = f ∗ Γ, and if additionally f is smooth and has
compact support, we have the following properties:

(i) Γ ∗∆f = f ,
(ii) ∆(Γ ∗ f) = f .

Recall integration by parts over a domain Ω in Rn for smooth function u and a vector field F , and
the Green’s theorem
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∫
Ω

u divF =

∫
Ω

div(uF )−
∫

Ω

F · ∇u,

=

∫
∂Ω

uF · ν ds−
∫

Ω

F · ∇u,
(22)

where ν is the outward unit vector, ∇u is the gradient vector and · denotes the usual inner product
in Rn. Then the identity Γ ∗∆f = f follows after integrating by parts in the complement of a small
neighbourhood of the origin and then taking the limit when the radius of this ball goes to zero. The
second identity follows from the first one and noticing that we can move the Laplace operator ∆
inside the integral with respect to the variable that does not appear as an argument of Γ.

Using integration by parts and using limit properties of the Newton kernel, one can obtain the
Green’s representation formula, for all y ∈ Ω:

(23) u(y) =

∫
∂Ω

(
u
∂Γ

∂ν
(x− y)− ∂u

∂ν
Γ(x− y)

)
ds+

∫
Ω

Γ(x− y)∆udx.

More over, suppose h ∈ C1(Ω̄)∩C2(Ω) is harmonic in Ω. G = Γ +h and suppose G = 0 on ∂Ω, then
it is possible to obtain the Green’s function of the first kind for the domain Ω:

(24) u(y) =

∫
∂Ω

u
∂G

∂ν
ds+

∫
Ω

G∆udx.

Green’s function on the ball BR with centre at the origin can be determined using the inversion
through the sphere of radius R, given by i(y) = R2

|y|2y. Note that

(25)
|y|2

R2
|x− i(y)|2 =

|x|2|y|2

R2
− 2x · y +R2.

Then the Green function is given by

(26) G(x, y) =

{
Γ(|x− y|)− Γ

(
|y|
R
|x− i(y)|

)
, y 6= 0

Γ(|x|)− Γ(R), y = 0.

Note that the Poisson’s kernel is the normal derivative of G on the boundary ∂BR

(27)
∂G

∂ν
=
R2 − |y|2

nωnR

1

|x− y|n
, x ∈ ∂BR

There is an explicit solution in the case Ω is the BR with centre in the origin:

(28) u(x) =

∫
∂BR

K(x, y)ϕ(y)ds+

∫
BR

G(x, y)f(y)dy,

where K is the Poisson kernel and G is the green function of the ball, and moreover, whenever ϕ is
continuous in ∂BR, then u(x) ∈ C0(B̄R) ∩ C2(BR).

Theorem 8 (([3],T2.6)). Let B = BR(0) and ϕ a continuous function on ∂B. Then the function u
given by

(29) u(x) =

{
R2−|x|2
nωnR

∫
∂B

ϕ(y)
|x−y|ndsy, x ∈ B

ϕ(x), x ∈ ∂B
,

is harmonic and u ∈ C0(B̄) ∩ C2(B).

Poisson’s kernel is smooth for all x ∈ B, then the smoothness of u will follow from the fact that we
can differentiate under the integral. This is a consequence of the Lebesgue’ Dominated Convergence
Theorem in measure theory: Let (Ω, µ) a measure space, and X ⊆ R open. Consider a function
f : X × Ω → R, such that for every x ∈ X, the function f(x, ·) : Ω → R is a Lebesgue-integrable
function; for all x ∈ X the derivative ∂xf exists for almost all ω ∈ Ω; There is a Lebesgue integrable
function g : Ω → R such that |∂xf(x, ω)| ≤ g(ω), for all x ∈ X and for almost every ω ∈ Ω. Then
applying the Dominated Convergence Theorem, for all x ∈ X we have:

(30)
d

dx

∫
Ω

f(x, ω)dµ =

∫
Ω

∂xf(x, ω)dµ.
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Let Ω ∈ Rn a domain. u ∈ C0(Ω) is called subharmonic if its values are less or equal than
the values of any harmonic function with bigger boundary data than u, all when restricted to any
properly contained ball in Ω, more precisely, if for every ball B such that B̄ ⊂ Ω and every function h
harmonic in B such that u ≤ h on ∂B then we also have u ≤ h in B. The definition of superhamonic
functions follows by replacing ≤ by ≥. Now we list some properties of subharmonic functions

• If u is subharmonic in Ω then it satisfies the strong maximum principle ( if maximum is
attained in the interior then it is constant).
• When comparing a superharmonic function v and a subharmonic function u in the a bounded

domain Ω such that v ≥ u on ∂Ω then if v 6= u we have v ≥ u in all Ω.
• Let u be subharmonic in Ω and B such that B̄ ⊂ Ω. By the Possion’s integral of u in ∂B we

obtain a harmonic function ū in B such that ū = u on ∂B. From this, we can construct the
following function U , which is subharmonic in Ω given by

(31) U(x) =

{
ū(x), x ∈ B
u(x), x ∈ Ω \B.

• Let {u1, . . . , um} be a finite collection of subharmonic functions in Ω. Then u(x) = maxi{ui(x)}
is subharmonic.

The corresponding results for superharmonic functions follow from replacing u by−u in each property.
Let Ω be a bounded domain and ϕ a function in Ω that is bounded in ∂Ω. Then a C0(Ω̄)

function u that is subharmonic in Ω is called subfunction relative to ϕ, if u ≤ ϕ on ∂Ω. We define
superfunction in a similar way. Note that constant functions with value less or equal than inf∂Ω ϕ
are subfunctions. Also note that by the maximum principle every subfunction is less or equal that
every superfunction.

Theorem 9 (Perron’s Method ([3],T2.12)). Let Sϕ the set of subfunctions relative to the function
ϕ : Ω→ R, where Ω is a bounded domain of Rn and ϕ is bounded on ∂Ω. Then the function

(32) u(x) = sup
v∈Sϕ

v(x),

is harmonic in Ω.

One way to prove Perron’s methods is via Harnack’s convergence theorem using Harnack’s inequal-
ity (see at the end of this section),by showing that u can be approximated by harmonic functions.
Another way to prove it is by using interior derivative estimates for harmonic functions, which im-
ply the equicontinuity on compact subdomains of the second order derivatives of any (uniformly)
bounded collection of harmonic functions. Consequently by Arzela’s theorem we have that any
bounded sequence of harmonic functions forms a normal family. In order to see this, it is worth
analysing the following example:

Example 10 (([3],T2.10)). From the mean value property and divergence theorems it follows

(33) Du(x) =
1

ωnRn

∫
B

Dudy =
1

ωnRn

∫
∂B

u · ν ds.

One can show that if u is harmonic in a domain Ω and if Ω′ is any compact subset of Ω and for any
multi-index r with d = dist(Ω′, ∂Ω) then following inequality holds

(34) sup
Ω′
|Dru| ≤

(
n|r|
d

)|r|
sup

Ω
|u|.

Note that for any open convex subset of Rn we have the estimate

(35) |u(x)− u(y)| ≤ |Du(z)||x− y|.
Whenever the partial derivatives of u are bounded, u is Lipschitz continuous. More over, any bounded
sequence of harmonic functions on a domain Ω contains a subsequence converging uniformly on
compact subdomains of Ω to a continuous function. To show that this limit function is also a harmonic
function, take any ball B contained in Ω, and for each element of the sequence, write the mean value
property. Then the uniform convergence will imply that the mean value property is also satisfied
by the limit function. Then conclude that any bounded sequence of harmonic functions in a



8 DANIEL BALLESTEROS-CHÁVEZ

domain Ω contains a subsequence converging uniformly on compact subdomains of Ω to a
harmonic function. ([3], T2.11).

Perron’s method then ensures the existence of a solution to the equation ∆u = 0 in a bounded
domain Ω of Rn, although it is sensible to expect that u ≤ ϕ on ∂Ω. In the case that u is a solution
of the solvable Dirichlet problem ∆u = 0 in Ω, u = ϕ on ∂Ω , then this solution coincide with the
solution given by Perron’s method. However the solvability of the Dirichlet problem depends on the
geometric properties of the boundary ∂Ω. For each z ∈ ∂Ω, we define the barrier at z relative to
Ω, denoted by wz, to be a C0(Ω̄) function such that wz is superharmonic in Ω, wz > 0 ∈ Ω̄ \ {z}
and wz(z) = 0. A point z ∈ ∂Ω is called regular if there exists a barrier at z. It this at regular
boundary points and for ϕ continuous at these, that the solution in Perron’s method, u, matches
with the boundary data of the Dirichlet problem, i.e., limx→z u(x) = ϕ(z).

Theorem 11 (([3],T2.14)). The classical Dirichlet problem with continuous boundary data is solvable
if and only if the boundary points are all regular.

The remaining problem is the characterisation of domains whose boundary points are all regular.
In the case of n = 2, the Dirichlet problem is solvable if every component of the complement of the
domain Ω has more than one element. Examples of this are domains bounded by a finite number of
simple closed curves. In general dimension, when the boundary of Ω is C2 then all boundary points
are regular.

Now we turn to the Poisson’s equation ∆u = f and state the existence result for the corresponding
Dirichlet problem in a domain Ω ⊂ Rn. First we note that if f is continuous, then the Newton
potential Γ ∗ f is not necessarily twice differentiable.

Example 12. In Ω = {(x1, x2) ∈ R2 |x1, x2 > 0}, let u(x1, x2) = x1x2 log(x1 + x2) and f(x1, x2) =

2
(

1− x1x2
(x1+x2)2

)
. Then ∆u = f , however f ∈ L∞(Ω) but u /∈ C1,1(Ω), since ux1x2 is not bounded in

Ω.

Example 13. For this it is necessary to assume f is Hölder continuous.

Theorem 14 (([3], T4.3)). Let Ω ⊂ Rn be a bounded domain and suppose that every boundary point
is regular. Assume that f is bounded and locally Hölder continuous in Ω. Then for any continuous
boundary values ϕ, the Dirichlet problem

(36)

{
∆u = f in Ω
u = ϕ on ∂Ω

,

has a unique solution.

Proof. Note that if w is the Newtonian potential of f and if we consider v = u−w, the last problem
is equivalent to Laplace’s equation ∆v = 0 in Ω and boundary values ϕ− w. �

The following is to address the question of the regularity of the solution after this limiting process.
One can prove (see [3], L4.4) that if B1 ⊂ B2 are two concentric balls, f ∈ Cα(B̄2) where 0 ≤ α ≤ 1
then w := Γ ∗ f in B2 is C2,α in B̄1. One can improve this Hölder estimate to solutions of ∆u = f ,
where u and f have compact support, so u belongs to C2

0(Rn) and f in Cα
0 (Rn), implying that

u ∈ C2,α
0 (Rn) and more over:

Theorem 15 ([3], T4.6). Let Ω ⊂ Rn a domain and suppose u ∈ C2(Ω) and f ∈ Cα(Ω) are such
that ∆u = f in Ω. Then u ∈ C2,α(Ω). More over for any concentric balls BR ⊂ B2R ⊂⊂ Ω one can
estimate

(37) |u|′C2,α(BR) ≤ C(|u|C0(B2R) +R2|f |′C0,α(B2R)),

where C = C(n, α).

Last result gives the interior C2,α regularity of solutions inside properly contained balls. See
an application of the interior regularity for Linear operators below. As we have noted earlier, an
immediate consequence of this interior estimate is the equicontinuity on compact subdomains of the
second derivatives of any bounded family of solutions of the equation ∆u = f . In the case of harmonic
functions, interior estimates of derivatives and Arzela’s Theorem is used to establish in [3],T2.11 that
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any bounded family of harmonic functions is a normal family. For the Poisson’s equation then (37)
and Arzela’s theorem imply that any bounded family of solution to ∆u = f in Ω, with f ∈ Cα(Ω),
contains a subsequent converging uniformly on compact subdomain to a soluton. This compactness
result gives the existence result for Poisson’s equation:

Theorem 16 ([3]T4.9). Let B a ball in Rn and f ∈ Cα(B) such that

(38) sup
x∈B

d2−β
x |f(x)| ≤ N <∞, for some 0 < β < 1.

There there is a unique solution u ∈ C0(B̄) ∩ C2(B), of the Dirichlet problem

(39)

{
∆u = f in B
u = 0 on ∂B,

More over the following inequality holds

(40) sup
x∈BR

d−βx |u(x)| ≤ CN, where the constant C = C(β).

On the other hand, from Theorem 16 one can obtain a similar estimate replacing general domains
Ω (not necessarily bounded, [3], T4.8). More over this estimate is also applicable to the intersection
of the domain Ω and the upper half space Rn

+ ([3], T4.11). The next result is about the regularity of
the solutions of the Dirichlet problem in the ball, is states when a solution in C0(B̄R) ∩ C2(BR) is
also in C2,α(B̄). The result follows from ([3], T4.11) applied to the Kelvin transformation.

Theorem 17 (Kellog’s Theorem in the Ball ([3], T4.13, C4.14)). Let f ∈ Cα(B̄) and ϕ ∈ C2,α(B̄),
and let u ∈ C0(B̄) ∩ C2(B) a solution of the Dirichlet problem

(41)

{
∆u = f in B
u = ϕ on ∂B,

where B ⊂ Rn is a ball. Then u ∈ C2,α(B̄), and the solution is unique.

Kellog’s theorem is valid for more general domains Ω ⊂ Rn, and will be discussed in the following
section.

Remark. Regarding the regularity of the solutions we will It is possible to prove using mollifiers
that if u is a C2 solution of the Laplace’s equation, then u is smooth. Even more, if u is assumed to
be continuous in the domain U and satisfies the mean value property for each ball inside the domain,
then u is smooth, since its mollification is the same function. Recall that by a mollifier is a smooth
function µ with the property that it can make sharped pieces of a given function to be mollified
or smooth-out, after convolution. Some facts about mollifiers are: a) Re-scaling in ε - balls, the
convolution of an ε-mollifier µε with a locally integrable function is smooth. b) Almost everywhere,
the point-wise convergence of (µε ∗ f)→ f as ε→ 0 holds. c) If f is continuous, the convergence is
uniformly on compact subsets of the domain. d) if f is in Lploc, 1 ≤ p < ∞, the convergence is also
in Lploc sense.

4.1. Harnack’s Inequality. . (See [5]) If u is harmonic and non-negative in the Ball B = BR(0),
then we have that for x ∈ B and y ∈ ∂B then

R− |x| = | |x| − |y| | ≤ |x− y| ≤ |x|+ |y| = R + |x|,
this implies

R2 − |x|2

nwnR(R− |x|)n
≥ R2 − |x|2

nwnR|y − x|n
≥ R2 − |x|2

nwnR(R + |x|)n
,

or equivalently

R + |x|
R− |x|

1

nwnR(R− |x|)n−2
≥ R2 − |x|2

nwnR|y − x|n
≥ R− |x|
R + |x|

1

nwnR(R + |x|)n−2
,

after substituting in the Piosson’s Integral Formula and a limit argument one can get the inequalities(
R

R− |x|

)n−2
R + |x|
R− |x|

u(0) ≥ u(x) ≥
(

R

R + |x|

)n−2
R− |x|
R + |x|

u(0).
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One consequence Harnack’s inequality is that any harmonic function defined for all space and
bounded from below is identically constant, this follows easily by adding a constant if necessary to
have the function to be positive and by taking the limit as R tends to infinity.

Also it is possible to prove that if {un} is a monotone increasing sequence of harmonic functions
bounded from above at a point p ∈ Ω, then in each compact subset of Ω, {un} converges uniformly
to a harmonic function.

A generalisation of this convergence result for uniform limit of solutions to a linear second order
PDE will be a consequence of the Schauder’s interior estimates, to be discuss in the following section.

5. Linear Second Order Partial Differential Equations:
Schauder Theory.

There exists a complete theory for linear equations relying in a priori estimates. These are in-
equalities on the values of solutions and its derivatives, before actually guarantee its existence.

By solving the Poisson’s equation ∆u = f in a domain Ω ⊂ Rn it is possible to show that for any
subset Ω′ ⊂⊂ Ω, if u ∈ C2(Ω) is a solution of the equation, then

(42) ||u||C2,α(Ω̄′) ≤ C(||u||C0(Ω) + ||f ||Cα(Ω̄)),

with C = C(α, n, d(Ω′, ∂Ω)), where α ∈ (0, 1) and d(Ω′, ∂Ω) is the distance between the sets. This
estimate can be turned into a global estimate for solutions with sufficiently smooth boundary values,
and with boundary ∂Ω sufficiently smooth.

Schauder theory consists in obtaining the same inequality for any C2,α solution of Lu = f , where
now the constant C depends additionally on bounds of the coefficients in Hölder space sense and also
on the minimum and maximum eigenvalues of of the coefficient matrix (aij) in Ω.

This estimates are used to apply the Continuity method and obtain the existence of a solution for
the Dirichlet from perturbations of the Poisson’s equation.

For solutions of elliptic linear equations in bounded domains, the maximum principle gives the
following point wise estimate

Theorem 18 ([3],T3.6). Let Lu = f in a bounded domain Ω ⊂ Rn where L is elliptic, c ≤ 0 and
u ∈ C0(Ω) ∩ C2(Ω) is a solution. Then

(43) |u|C0(Ω) ≤ sup
∂Ω
|u|+ C sup

Ω

|f |
λ
,

where C = C(diam Ω, β = sup |b|/λ).

Theorem 19 (Schauder’s estimate,([3],T6.6)). Let Ω ⊂ Rn be a C2,α domain and assume u ∈ C2,α(Ω̄)
is a solution of Lu = f in Ω and u = ϕ on ∂Ω, where ϕ ∈ C2,α(Ω̄), f ∈ Cα(Ω̄), L is uniformly
elliptic. Also assume that there are positive constants λ,Λ such that for aij, bi, c ∈ Cα(Ω) we have

(44) aij(x)ξiξj ≥ λ|ξ|2, x ∈ Ω, ξ ∈ Rn,

and

(45) |aij|Cα(Ω), |bi|Cα(Ω), |c|Cα(Ω) ≤ Λ.

Then there is a constant C = C(n, α, λ,Λ,Ω) such that the following inequality holds

(46) |u|C2,α(Ω) ≤ C(|u|C0(Ω) + |ϕ|C2,α(Ω) + |f |Cα(Ω)).

From this a priori estimate then we can start with a solution for the Poisson’s equation ∆u = f
and then trace a solution for Lu = f through solutions of a family of equations joining ∆u = f with
Lu = f . This idea is stated in the following theorem.

Theorem 20 (Continuity Method ([3],T5.2)). Let B be a Banach space, V a normed linear space,
and L0, L1 : B → V two bounded linear operators. Define for 0 ≤ t ≤ 1 the family

(47) Lt = (1− t)L0 + tL1,

and assume there exists a constant C such that

(48) |x|B ≤ C|Ltx|V , 0 ≤ t ≤ 1.

Then L1 is surjective if and only if L0 is surjective.
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First we are going to stablish the existence for the Dirichlet problem in th case where Ω is the ball.

Proposition 21 (([3], C6.9)). Let B a ball in Rn and L strictly elliptic in B, with coefficients in
Cα(B̄) and c ≤ 0. Then if f ∈ Cα(B̄) and ϕ ∈ C2,α(B̄), there is a unique solution u ∈ C2,α(B̄) of
the boundary value problem Lu = f in B, u = ϕ on ∂B.

Proof. The detailed proof follows the one given below for more general domains Ω and using Kellogg’s
theorem on the ball (Theorem 17). �

Now we are going to stablish the Perron’s method for linear equations. We introduce the concept of
subsolution of Lu = f , namely a funciton u ∈ C0(Ω) such that for every ball B properly contained
in Ω and every solution v of Lv = f in B, if u ≤ v on ∂B then u ≤ v in B. By changing ≤ by ≥, we
say that u ∈ C0(Ω) is a supersolution of Lu = f . When f ∈ Cα(Ω) and also the coefficients of L
are Hölder continuous, c ≤ 0 and such that the maximum principle holds, then we have the following
properties:

• The function u ∈ C2(Ω) is a subsolution if and only if Lu ≥ f .
• Let Ω be bounded, u and v a subsolution and a supersolution in Ω respectively. If v ≥ u on
∂B then either v ≥ u in Ω or they are equal.
• Let B a ball such that B̄ ⊂ Ω and u a subsolution in Ω. Let ū the solution to the Dirichlet

problem in the ball Lū = f in B such that ū = u on ∂B. Then we can obtain a subsolution
U in Ω given by

U(x) =

{
ū(x) x ∈ B
u(x) x ∈ Ω \B .

• Let u1, . . . , uk be subsolutions in Ω. Then the function u(x) = maxi{ui(x)} is a subsolution
in Ω.

Let Ω be bounded and ϕ a bounded function on ∂Ω. We say that u ∈ C0(Ω̄) is a subfunciton
relative to ϕ if u is a subsolution in Ω and u ≤ ϕ on ∂Ω. We say that u is a supersolution relative
to ϕ if it is a superfunction relative to ϕ in Ω and u ≥ ϕ on ∂Ω. Define Sϕ to be the set of all
subfunctions in Ω relative to ϕ. In the case L is strictly elliptic in Ω and f and the coefficients of L
are bounded, then Sϕ is non-empty and bounded from above.

Theorem 22 (Perron’s process, ([3], T6.11)). Let Ω a bounded domain, L a strictly elliptic operator
with c ≤ 0 and coefficients in Cα(Ω), the funciton f ∈ Cα(Ω), and ϕ a bounded function on ∂Ω.
Then the function u(x) = supv∈Sϕ v(x) belongs to C2,α(Ω) and is such that Lu = f in Ω whenever u
is bounded.

Next we analyse the conditions that will make this soulution to assume given boundary values.
Let ϕ bounded on ∂Ω and continuous at x0 ∈ ∂Ω. The sequence of functions {w+

i } and {w−i }
are called respectively upper barrier and lower barrier in Ω relative to L, f and ϕ at the point
x0 ∈ Ω if each w+

i is a superfunction relative to ϕ in Ω, w−i is a subfunction relative to ϕ in Ω, and
limi→∞w

±
i (x0) = ϕ(x0). If at a point there exist both upper and lower barrier, then we say simply

that there is a barrier at that point.

Theorem 23 (([3], L6.12)). For a bounded function ϕ on ∂Ω continuous at x0 ∈ ∂Ω, the solution
of the Dirichlet problem Lu = f in Ω given by the Perron’s process, satisfy the boundary condition
limx→x0 u(x) = ϕ(x0) if there exist a barrier at x0.

Again the question of what domains admit a barrier is of interest. In particular, any C2 domain,
and domains satisfying an exterior sphere condition at every point on the boundary has a barrier
([3],T6.13).

Now, with Perron’s process we can now prove a more general version of Kellogg’s Theorem.

Theorem 24 (Kellogg’s Theorem, ([3], T6.14)). Let L be strictly elliptic in a bounded domain Ω
with c ≤ 0 and let f and the coefficients of L belong to Cα(Ω̄). Suppose that Ω is a C2,α domain and
that ϕ ∈ C2,α(Ω̄). If u ∈ C0(Ω̄) ∩ C2,α(Ω) is a solution of the Dirichlet problem Lu = f in Ω, u = ϕ
on ∂Ω. Then u ∈ C2,α(Ω̄).
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Proof. Since Ω is in particular a C2 domain we apply Theorem 23. There exist then a solution
u ∈ C0(Ω̄)∩C2,α(Ω). Then we have to check only that at any point x0 ∈ ∂Ω there is a neighbourhood
V of x0 such that u ∈ C2,α(V ∩ Ω̄). �

Now we get the general existence theorem for strictly linear equations in C2,α domains.

Theorem 25 (([3], T6.8)). Let Ω ⊂ Rn be a C2,α domain and L a strictly elliptic linear operator in
Ω with coefficients in Cα(Ω̄), with c ≤ 0. Assume that the Dirichlet problem for Poisson’s equation
∆u = f in Ω, u = ϕ on ∂Ω has a C2,α(Ω̄) solution for all f ∈ Cα(Ω̄) and all ϕ ∈ C2,α(Ω̄), then the
Dirichlet problem

Lu = f in Ω

u = ϕ on ∂Ω,
(49)

also has a unique solution in C2,α(Ω̄) for all such f and ϕ.

Proof. Note that (by linearity) we can restrict to the case of zero boundary values: Lv = g in Ω and
v = 0 on ∂Ω ( take v = u− ϕ, and g = f − Lϕ).

Now the following family of equations is considered

(50) Lt = (1− t)∆ + tL, 0 ≤ t ≤ 1,

where from the hypothesis on the coefficients of L we can see that Lt satisfies

aijt (x)ξiξj ≥ λt|ξ|2, ∀ x ∈ Ω, ξ ∈ Rn,

|aijt |Cα(Ω), |bit|Cα(Ω), |ct|Cα(Ω) ≤ Λt.
(51)

These bounds are independent of t when we take

(52) λt = min(1, λ), Λt = max(1,Λ).

Let B1 = {u ∈ C2,α(Ω) : u = 0, on ∂Ω} and B2 = Cα(Ω̄). Note then that Lt : B1 → B2

is a bounded linear operator between Banach spaces. Let ut a solution of Ltu = f for arbitrary
f ∈ Cα(Ω). From maximum principle, we obtained Theorem 18, and in this case

(53) |ut|C0(Ω) ≤ C|f |Cα(Ω).

Additionally from equation (46) in Theorem 19 we have

(54) |ut|C2,α(Ω) ≤ C(|u|C0(Ω) + |f |Cα(Ω)) = C|f |Cα(Ω),

equivallently we have

(55) |u|B1 ≤ C|Ltu|B2 ,

with C is independent of t. Kellog’s theorem states that the solution u of the Dirichlet problem for
the Poisson’s equation belongs to C2,α(Ω̄) for f ∈ Cα(Ω) and when Ω and the boundary values are
also C2,α. Then we have L0 = ∆ : B1 → B2 is onto and by continuity method L1 is invertible. �

To investigate higher regularity of solutions, the following lemma states that if u is a C2(Ω) solution
of Lu = f , and if f and the coefficients of L are in Cα, then u should also be in C2,α.

Lemma 26 (([3], L6.16)). Let u ∈ C2(Ω) be a solution of the equation Lu = f , in an open set Ω,
where f and the coeffients of the elliptic operator L are in Cα(Ω). Then u ∈ C2,α(Ω).

The previous lemma and Schauder estimates gives the following

Theorem 27 (Interior Regularity Theorem ([3], T6.17)). Let u ∈ C2(Ω) be a solution of the equation
Lu = f in the open set Ω, where f and the coefficients of the elliptic operator L are in Cj,α(Ω). Then
u ∈ C2+j,α(Ω).

Proof. For j = 0, we have the previous lemma. Let j = 1, so f and the coefficients of L are in C1,α(Ω),
and assume u ∈ C2(Ω). Hence u ∈ C2,α(Ω). Define for h ∈ R small, and e1 = (1, 0, . . . , 0) ∈ Rn the
following quotient

uh := h−1 (u(x+ he1)− u(x)) .
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Note that

Luh = aiju
h
ij + biu

h
i + cuh = fh − ahijuij(x+ he1)− bhi ui(x+ he1)− chu(x+ he1).

The fact that f ∈ C1,α(Ω) and the following integral identity

fh(x) =
1

h

∫ 1

0

d

dt
f(x+ the1)dt =

∫ 1

0

∂

∂x1

f(x+ the1)dt,

imply that fh ∈ Cα(Ω). Same conclusion applies for the coefficients ahij, b
h
i , c

h. Using convergence

arguments and the fact that u ∈ C2,α(Ω) implies that uh ∈ C2,α and that limh→0 u(x + he1) = u(x)
is actually C3,α. The rest of the proof follows by induction. �

More over, it is possible to obtain also the global regularity theorem using a stronger version of
the lemma above and have a priori estimates up to the boundary

Theorem 28 (Global Regularity Theorem ([3], T6.19)). Let Ω be a Cj,α domain, j ≥ 0, and
ϕ ∈ Ck+2,α(Ω̄). Let u ∈ C0(Ω̄)∩C2(Ω) be a solution of the Dirichlet problem Lu = f in Ω and u = ϕ
on ∂Ω, where f and the coefficients of the strictly (uniformly) elliptic operator L are in Cj,α(Ω̄).
Then u ∈ C2+j,α(Ω̄).

6. Quasi-linear Second Order Partial Differential Equations:
The Leray-Schauder Fixed Point Theorem.

Following the same spirit of the last section, here we consider the Dirichlet problem Qu = 0 in Ω,
u = ϕ on ∂Ω such that Ω is a bounded domain, the coefficients of Q are Cα in their domain, the
values on the boundary ϕ ∈ C2,α(Ω̄). Then the existence of a solution u ∈ C2,α(Ω̄) if we can stablish
the a priori estimate

(56) |u|C1,β(Ω̄) ≤M.

A four-step process is stated in [3] to get this estimate is the successive estimation of supΩ |u| (using
maximum principle for quasilinear equations), sup∂Ω |Du|, supΩ |Du|, each using the preceding ones,
and finally obtain an estimate for |u|C1,β(Ω̄) for some β > 0.

There are lots of results regarding the gradient estimates in the interior and in the boundary.
It is possible to obtain interior estimates in terms of the gradient estimate on the boundary by a
refinement of the so called Bernstein technique. This is precisely

The existence result is obtained by an extension of the Brouwer fixed point theorem:

Theorem 29. Let B ⊂ Rn be an open ball and T : B̄ → B̄ a continuous map. Then there is some
x ∈ B̄ such that T (x) = x, i.e, T has at least one fixed point.

Theorem 30 ([3], T11.3, Leray-Schauder). Let B a Banach space and T : B → B a compact
mapping, that is, the image under T of any bounded set have compact closure. Suppose that there
exists M > 0 such that

(57) |x|B < M

for all x ∈ B . Then for all σ ∈ [0, 1], σT has a fixed point.

Now we apply this result to establish the existence of a solution for the quasi-linear case.

Theorem 31 ([3], T11.4). Let Ω ∈ Rn be a bounded domain and suppose that the quasilinear equation
Q is elliptic in Ω̄ with Hölder continuous coefficients aij, b ∈ Cα(Ω̄×R×Rn), 0 ≤ α ≤ 1, the boundary
∂Ω ∈ C2,α and assume that the boundary values ϕ ∈ C2,α(Ω̄). Consider the following one parameter
family of boundary value problems

(58)

{
Qσu = 0 in Ω
u = σϕ on ∂Ω,

where Qσ is defined for 0 ≤ σ ≤ 1 by

(59) Qσu = aij(x, u,Du)Diju+ σb(x, u,Du).
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If for some β > 0 there is a constant M independent of u and σ, such that for every solution
u ∈ C2,α(Ω̄) of the Dirichlet problem Qσu = 0 in Ω, u = σϕ on ∂Ω, and this constant satisfies

(60) |u|C1,β(Ω̄) < M,

then the Dirichlet problem Qu = 0 in Ω, u = ϕ on ∂Ω, is solvable in C2,α(Ω̄).

Proof. Recall that if 0 < α ≤ β < 1, and Ω is a bounded set, then for every f ∈ Cβ(Ω) we have

(61) |f |Cα(Ω) ≤ diam Ωβ−α|f |Cβ(Ω),

from where the inclusion Cβ(Ω) → Cα(Ω) follows. This inclusion is also compact as consequence
of Arzela-Ascoli theorem. Then there is a compact inclusion of C2,αβ(Ω̄) in C1,β(Ω̄) and another in
C2,α(Ω̄).

Define the operator T : C1,α(Ω̄)→ C2,αβ(Ω̄) by letting Tv = u be the unique solution in C2,αβ(Ω̄)
of the linear Dirichlet problem,

Qu = aij(x, v,Dv)Diju+ b(x, v,Dv) = 0, in Ω

u = ϕ, on ∂Ω,
(62)

where we are applying the existence and uniqueness result from the theory of elliptic linear equations.
Then a soulution in u ∈ C2,α(Ω̄), is a fixed point of T , for a solution of the Dirichlet problem above
is actually a solution of the equation Tu = u in C1,β(Ω̄).

Note on the other hand that the equation σTu = u in C1,β(Ω̄), is equivalent to the Dirichlet
problem

Qσu = aij(x, u,Du)Diju+ σb(x, u,Du) = 0, in Ω

u = σϕ, on ∂Ω,
(63)

We have to show the compactness and continuity of the operator T in order to apply the Leray-
Schauder theorem. That T is a compact mapping follows from the fact that any bounded set in
A ⊂ C1,β(Ω̄), then by Schauder’s estimate, T maps A into a bounded set in C2,αβ(Ω̄). By Arzela’s
Theorem, this is precompact in C2(Ω̄) and C1,β(Ω̄).

Continuity of T we take a convergent sequence lim vm = v in C1,β(Ω̄). Note that Tvm is precompact
in C2(Ω̄). This means that for every subsequence of {vm}, the corresponding {Tvm} has convergent
subsequence. Call {T v̄m} such a convergent subsequence and let u ∈ C2(Ω̄) be its limit. Since

0 = lim
n→∞

{
aij(x, v̄m, Dv̄m)DijT v̄m + b(x, v̄m, Dv̄m)

}
= aij(x, v,Dv)Diju+ b(x, v,Dv),

(64)

then we conclude that Tv = u and then the sequence Tvm converges to u. �

7. Fully Nonlinear Partial Differential Equation

.
We are concern in operators of the type

(65) F [u] = F (x, u,Du,D2u)

where Ω ⊂ Rn is an open domain, u ∈ C2(Ω) ∩ C0(Ω̄), Du denote the gradient of u and D2u the
hessian matrix. F is then a function on Γ = Ω × R × Rn × Rn×n, where Rn×n denotes the space of
real symmetric n× n matrices and write γ = (x, z, p, r) ∈ Γ. If the function F is an affine function
with respect to the r variables then we say that F is quasilinear, and in any other case we say that
F is fully nonlinear.

Definition 32. The operator F is called elliptic in U ⊂ Γ if the matrix

(66) Fij(γ) =
∂F

∂rij
(γ)

is positive. If λ(x) and Λ(x) denote respectively the minimum and maximum eigenvalue of [Fij(x)],
then F is called uniformly elliptic if Λ/λ is bounded and strictly elliptic if 1/λ is bounded.
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Example 33. One can see that in dimension n = 2, the ellipticity of F = F (x, u,Du,D2u) is
equivalent to have

(67) 4F11F22 − F12 > 0.

One example to have in mind is the Monge-Ampére equation

(68) det(D2u) = f in Ω.

It turns out to be elliptic in the class of convex functions u, and then necessarily f > 0.
We will see in this section that by the continuity method, the existence of a solution for the

Dirichlet problem is reduced to obtain the a priori estimate

(69) |u|C2,α(Ω̄) ≤ C,

for some 0 < α < 1. Then, like in the quasilinear case we have to establish estimates for supΩ |u| ,
sup∂Ω |Du|, supΩ |Du|, and additionally sup∂Ω |D2u|, supΩ |D2u|.

Int he case F is an uniformly elliptic, fully nonlinear concave equation, the Evans-Krylov theorem
[1][4], gives the following a priori estimate

(70) |u|C2,α(Ω̄) ≤ C|u|C1,1(Ω̄),

when for the case Ω = B1 is the unit ball and C depends only on the concavity of F .
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