Worked examples on complex numbers and linear algebra

Table of Contents

© 2024 Daniel Ballesteros Chávez

This work is licensed under CC BY 4.0

Introduction.

These notes contain a series of worked examples and exercises for students of engineering who are taking a first course in Linear Algebra at Poznan University of Technology.

The idea is to provide the students with enough examples on the computational side of the subject, so they can practice and improve their skills. These exercises also work as a source of examples for definitions, propositions and theorems behind the theory of this useful and beautiful subject.

We hope that this material can complement the tutorial sessions, where sometimes it is not possible to present fully step-by-step solutions to exercises that involve lengthy computations due to time limitations.

Introduction to Linear Algebra is the opening gate to a whole new world of mathematical tools with countless applications including geometry, graph theory, circuits and much more.

I would like to express my gratitude to the students that took part in the course for they remarks suggestions and discussions.

I take responsibility for any mistake/typo that may appear in the notes and any notice will be very appreciated.

Complex numbers

The set of complex numbers

\begin{equation*} \mathbb{C}= \{ x + iy : x,y\in \mathbb{R}, i^2 = -1\} \end{equation*}

The set of complex numbers is denoted by \(\mathbb{C}\). Every element \(z\in \mathbb{C}\) can be written as

\begin{equation*} z = x + i y, \end{equation*}

where \(x,y\in \mathbb{R}\) and \(i\) is a special complex number with the property that \(i^2 = -1\).

On this set, the operations of addition, subtraction, multiplication and division are defined.

Addition of complex numbers

If \(z = x_1 + i y_1\) and \(w = x_2 + i y_2\) are two complex numbers, then the sum is

\begin{equation*} z + w = (x_1 + x_2) + i(y_1 + y_2). \end{equation*}
Example

Let \(z = 4 + \frac{i}{4}\) and \(w = 3 - 5i\). Then, the sum is

\begin{equation*} \begin{split} z + w & = \left( 4 + \frac{i}{4} \right) + (3 - 5i) \\ & = \left( 4 + 3 \right) + \left(\frac{i}{4} - 5i\right) \\ & = 7 + i \left(\frac{1}{4} - 5\right) \\ & = 7 - \frac{19}{4} i\\ \end{split} \end{equation*}

Subtraction of complex numbers

If \(z = x_1 + i y_1\) and \(w = x_2 + i y_2\) are two complex numbers, then the difference is

\begin{equation*} z - w = (x_1 - x_2) + i(y_1 - y_2). \end{equation*}
Example

Let \(z = 7 - \frac{3i}{2}\) and \(w = 1 - i\). Then

\begin{equation*} \begin{split} z - w & = \left( 7 - \frac{3i}{2} \right) - \left(1 - i \right) \\ & = 7 - \frac{3i}{2} - 1 + i \\ & = 6 - \frac{i}{2} \end{split} \end{equation*}

Multiplication of two complex numbers:

If \(z = x_1 + i y_1\) and \(w = x_2 + i y_2\) are two complex numbers, then the multiplication or product is

\begin{equation*} z w = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1). \end{equation*}
Example

Let \(z = 7 - \frac{3i}{2}\) and \(w = 1 - i\). Then

\begin{equation*} \begin{split} z w & = \left( 7 - \frac{3i}{2} \right) \left(1 - i \right) \\ & = 7 - 7i - \frac{3i}{2} + \frac{3}{2} i^2 \\ & = 7 - 7i - \frac{3i}{2} - \frac{3}{2} \\ & = \frac{11}{2} - \frac{17i}{2}. \end{split} \end{equation*}

Conjugate of a complex number

If \(z = x + iy\), then the conjugate is

\begin{equation*} \overline{z} = x - iy. \end{equation*}
Examples
  • The conjugate of \(z = 3 - 7i\) is \(\overline{z} = 3 + 7i\).
  • The conjugate of \(z = 1 + 3i\) is \(\overline{z} = 1 - 3i\).
  • The conjugate of \(z = 3i\) is \(\overline{z} = -3i\).
  • The conjugate of \(z = 5\) is \(\overline{z} = 5\).

Modulus of a complex number

If \(z = x + iy\), then modulus of \(z\) is the positive real number

\begin{equation*} \, |z| =\sqrt{ x^2 + y^2}. \end{equation*}
Example
  • The modulus of \(z = 3 - 7i\) is the real number \(|z| = \sqrt{58}\).
  • Compute the modulus of \(z = \frac{1}{2} + \sqrt{2} i\).
\begin{equation*} \, |z| = \sqrt{\frac{1}{4} + 2} = \sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2} \end{equation*}
Example
Notice that for any \(z = x + iy\), the product of a complex number with its conjugate equals the modulus squared:
\begin{equation*} z\overline{z} = |z|^2 = x^2 + y^2. \end{equation*}

Quotient of two complex numbers:

If \(z = x_1 + i y_1\) and \(w = x_2 + i y_2\) are two complex numbers with \(w \neq 0\), then the quotient is

\begin{equation*} \frac{z}{w} = \frac{z}{w} \frac{\overline{w}}{\overline{w}} = \frac{(x_1 + i y_1)(x_2 - iy_2)}{x_2^2 + y_2^2}. \end{equation*}
Example
Write the following quotient of complex number in the form \(x + i y\).
\begin{equation*} \begin{split} \frac{1 + 2i}{3 + 4i} & = \frac{1 + 2i}{3 + 4i} \cdot \frac{3 -4i}{3 - 4i} \\ & = \frac{(1 + 2i)(3 - 4i)}{9 + 16} \\ & = \frac{3 - 4i + 6i - 8i^2}{25} \\ & = \frac{11 + 2i }{25} \\ \end{split} \end{equation*}

Modulus, argument Euler's formula and polar form.

Every complex number can be written in polar form

\begin{equation*} z = r e^{i\theta}, \end{equation*}

where

  • \(r = |z|\) is the modulus of the complex number.
  • \(\theta\) is the argument of the complex number (angle).
  • \(e^{i\theta} = \cos(\theta) + i \sin(\theta)\) is the beautiful Euler's formula.
Example
Write in polar form the complex number \(z = -1 -\sqrt{3}i\).

A direct computation shows that the modulus is

\begin{equation*} r = |z| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{4} =2. \end{equation*}

After you draw the complex number on the plane, you can choose verify that

\begin{equation*} \theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3}. \end{equation*}

Then we can write:

\begin{equation*} z = 2 e^{\frac{4\pi}{3} i}, \end{equation*}

or equivalently

\begin{equation*} z = 2 \left( \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)\right). \end{equation*}

Compute n-th roots of a complex number

If \(z = r e^{i\theta}\), then the nth-root is given by the formula

\begin{equation*} \sqrt[n]{z} = \sqrt[n]{r}\left( \cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right)\right), \end{equation*}

and there are n-different values corresponding to \(k = 0, 1, 2, ..., (n-1)\).

Example
Compute \(\sqrt[3]{-2+2i}\).

The modulus of \(-2 + 2i\) is \(r = \sqrt{8}\), and the argument is \(\theta =\frac{3\pi}{4}\).

Notice that \(\sqrt[3]{r} = \sqrt[3]{\sqrt{8}} = (8)^{1/6} = (2^3)^{1/6} = 2^{1/2} = \sqrt{2}\).

Then using the identity from the definition

\begin{equation*} \sqrt[3]{-2+2i} = \sqrt{2} \left( \cos\left(\frac{\frac{3\pi}{4} + 2k\pi}{3}\right) + i\sin\left(\frac{\frac{3\pi}{4} + 2k\pi}{3}\right)\right), \end{equation*}

The root for \(k=0\) is

\begin{equation*} \begin{split} z_0 & = \sqrt{2} \left( \cos\left(\frac{3\pi}{12}\right) + i\sin\left(\frac{3\pi}{12}\right)\right)\\ & = \sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)\\ & = \sqrt{2} \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}\right)\\ & = 1 + i. \end{split} \end{equation*}

The root for \(k=1\) is

\begin{equation*} \begin{split} z_1 &= \sqrt{2} \left( \cos\left(\frac{11\pi}{12}\right) + i\sin\left(\frac{11\pi}{12}\right)\right), \end{split} \end{equation*}

The root for \(k=2\) is

\begin{equation*} \begin{split} z_2 &= \sqrt{2} \left( \cos\left(\frac{19\pi}{12}\right) + i\sin\left(\frac{19\pi}{12}\right)\right), \end{split} \end{equation*}

Compute n-th power of a complex number (Moivre's Formula)

If \(z = re^{i\theta}\) then

\begin{equation*} z^n = r^ne^{in\theta}. \end{equation*}

Equivalently we can write the so called Moivre's formula:

\begin{equation*} z^n = r^n\left( \cos\left(n\theta\right) + i\sin\left(n\theta\right)\right). \end{equation*}
Example
Compute \((-2+2i)^4\).

The modulus of \(-2 + 2i\) is \(r = \sqrt{8}\), and the argument is \(\theta =\frac{3\pi}{4}\), then

\begin{equation*} (-2 + 2i)^4 = 8^2\left( \cos\left(3\pi\right) + i\sin\left(3\pi\right)\right) = -64. \end{equation*}

Geometry in the complex plane:

We should understand the modulus of a complex number as a length:

Length of line segment
\(|z_1 - z_0|\) measures the length of the line segment joining the two given complex numbers \(z_0\) and \(z_1\).
Circle
For a given \(z_0\), the set of complex numbers satisfying \(|z- z_0| = R\) describes the circle with centre at \(z_0\) and radius \(R\).
Ellipse

An ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

\begin{equation*} \, |z - a_1| + |z - a_2| = c, \quad \mbox{as long as } c > |a_1 - a_2|. \end{equation*}
Hyperbola
(Exercise)
Perpendicular bisector

Perpendicular bisector of the line segment joining two complex numbers \(z_1\) and \(z_2\)

\begin{equation*} \,|z - z_1| = |z - z_2| \end{equation*}

Matrix arithmetic

In this section we will review the basic arithmetic of matrices with real coefficients. One can easily generalise these properties for matrices with complex coefficients, and we encourage the student to write examples in this field.

Matrix with real coefficients

A matrix \(A\) of size \(n\times m\) with real coefficients, is a rectangular arrangement of real numbers consisting of \(n\) rows and \(m\) columns (in this order).

\begin{equation*} A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm}\\ \end{array} \right) \end{equation*}

The entries of \(A\) are the real numbers \(a_{ij}\), where \(1\leq i \leq n\) (is the row index) and \(1 \leq j \leq m\) (is the column index).

The set of all matrices with real coefficients of size \(n \times m\) will be denoted by \(\mathcal{M}^{n\times m}(\mathbb{R})\).

When the number of rows is the same as the number of columns (\(n = m\)), then \(A\) is also called a square matrix. If \(A\) is a square matrix, the diagonal of \(A\) is given by the coefficients \(a_{ii}\), for \(i = 1, 2, ...,n\), that is, \(\mbox{diag}(A) = (a_{11}, a_{22}, \ldots, a_{nn})\).

Example
An example of a \(3\times 3\) matrix is
\begin{equation*} A = \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ 7 & 8 & 9\\ \end{array} \right), \end{equation*}
Example
An example of a \(2\times 3\) matrix is
\begin{equation*} B = \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ \end{array} \right), \end{equation*}

The entry \(b_{23} = -6\), and the entry \(b_{12} = 2\).

Multiplication by a scalar

Let \(r\in \mathbb{R}\) be any real number and \(A\) be a matrix of size \(n\times m\) with real coefficients, with entries \(a_{ij}\). We define the product of \(A\) by the sacar \(r\) as the matrix \(rA\) whose entries are \(ra_{ij}\).

\begin{equation*} A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm}\\ \end{array} \right), \quad rA = \left( \begin{array}{ccc} ra_{11} & \cdots & ra_{1m}\\ \vdots & \vdots & \vdots \\ ra_{n1} & \cdots & ra_{nm}\\ \end{array} \right). \end{equation*}
Example
\begin{equation*} A = \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ 7 & 8 & 9\\ \end{array} \right), \end{equation*} \begin{equation*} -7A = \left( \begin{array}{rrr} -7 & -14 & -21\\ 28 & 35 & 42 \\ -49 & -56 & -63\\ \end{array} \right), \end{equation*}

Sum and difference of matrices

Let \(A\) and \(B\) any two matrices of the same size \(n\times m\) with real coefficients with entries \(a_{ij}\) and \(b_{ij}\), respectively. We define the sum of \(A\) and \(B\) as the matrix \(A + B\) of the same size \(n \times m\), whose entries are \(a_{ij} + b_{ij}\). The difference \(A - B\) is the matrix of the same size \(n \times m\), whose entries are \(a_{ij} - b_{ij}\).

\begin{equation*} A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm}\\ \end{array} \right), \quad B = \left( \begin{array}{ccc} b_{11} & \cdots & b_{1m}\\ \vdots & \vdots & \vdots \\ b_{n1} & \cdots & b_{nm}\\ \end{array} \right), \end{equation*} \begin{equation*} A + B = \left( \begin{array}{ccc} a_{11} + b_{11} & \cdots & a_{1m} + b_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{nm} + b_{nm}\\ \end{array} \right), \quad A - B = \left( \begin{array}{ccc} a_{11} - b_{11} & \cdots & a_{1m} - b_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} - b_{n1} & \cdots & a_{nm} - b_{nm}\\ \end{array} \right). \end{equation*}
Example
Compute the matrix \(3A - 2B\) where
\begin{equation*} A = \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ \end{array} \right), \quad B = \left( \begin{array}{rrr} 0 & 3 & 9\\ -6 & -2 & 6 \\ \end{array} \right). \end{equation*}

Then

\begin{equation*} \begin{split} 3A - 2B & = 3 \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ \end{array} \right) -2\left( \begin{array}{rrr} 0 & 3 & 9\\ -6 & -2 & 6 \\ \end{array} \right) \\ &= \left( \begin{array}{rrr} 3 & 6 & 9\\ -12 & -15 & -18 \\ \end{array} \right) -\left( \begin{array}{rrr} 0 & 6 & 18\\ -12 & -4 & 12 \\ \end{array} \right) \\ &= \left( \begin{array}{rrr} (3 -0) & (6 -6) & (9- 18)\\ (-12 + 12) & (-15 + 4) & (-18 - 12) \\ \end{array} \right) \\ & = \left( \begin{array}{rrr} 3 & 0 & -9\\ 0 & -11 & -30 \\ \end{array} \right). \end{split} \end{equation*}

Transpose of a matrix

Let \(A\) a matrix of size \(n\times m\) with real coefficients with entries \(a_{ij}\). We define the transpose of \(A\) as the matrix \(A^T\) of size \(m \times n\), whose entries are \(a^{T}_{ij} = a_{ji}\).

\begin{equation*} A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm}\\ \end{array} \right), \quad A^T = \left( \begin{array}{ccc} a_{11} & \cdots & a_{n1}\\ \vdots & \vdots & \vdots \\ a_{1m} & \cdots & a_{nm}\\ \end{array} \right), \end{equation*}
Example
The transpose matrix of
\begin{equation*} A = \left( \begin{array}{rrr} 1 & 2 & 3\\ -4 & -5 & -6 \\ \end{array} \right), \end{equation*}

is the following matrix:

\begin{equation*} A^{T} = \left( \begin{array}{rrr} 1 & -4 \\ 2 & -5 \\ 3 & -6 \\ \end{array} \right). \end{equation*}
Example
The transpose matrix of the matrix
\begin{equation*} A = \left( \begin{array}{ccc} 1 & 5 & 8\\ 5 & 2 & 3 \\ 8 & 3 & -1\\ \end{array} \right) \end{equation*}

gives the same matrix. In this case we write: \(A^{T}= A\).

Let \(A\) be a square matrix. If \(A^{T} = A\), then we will say that \(A\) is a symmetric matrix.

Multiplication of two matrices

Let \(A\) a matrix of size \(n\times m\) with entries \(a_{ij}\) and \(B\) a matrix matrices of size \(m \times \ell\) with entries \(b_{ij}\). We define the product of \(A\) with \(B\) (in that order) as the matrix \(AB\) of size \(n \times \ell\) with entries \(C_{ij}\), with \(1 \leq i \leq n\), \(1 \leq j \leq \ell\) given by

\begin{equation*} c_{ij}= \sum_{k = 1}^{m} a_{ik}b_{kj}. \end{equation*} \begin{equation*} A = \left( \begin{array}{ccc} a_{11} & \cdots & a_{1m}\\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm}\\ \end{array} \right), \quad B = \left( \begin{array}{ccc} b_{11} & \cdots & b_{1\ell}\\ \vdots & \vdots & \vdots \\ b_{m1} & \cdots & b_{m\ell}\\ \end{array} \right), \end{equation*} \begin{equation*} A B = \left( \begin{array}{ccc} (a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1m}b_{m1}) & \cdots & (a_{11}b_{1\ell} + a_{12}b_{2\ell} + \cdots + a_{1m}b_{m\ell}) \\ \vdots & \vdots & \vdots \\ (a_{n1}b_{11} + a_{n2}b_{21} + \cdots + a_{nm}b_{m1}) & \cdots & (a_{n1}b_{1\ell} + a_{n2}b_{2\ell} + \cdots + a_{nm}b_{m\ell}) \\ \end{array} \right). \end{equation*}
Example
Perform the follwong multiplication of matrices
\begin{equation*} A = \left( \begin{array}{rrr} 1 & -12 & 5\\ 0 & -2 & 4 \\ 3 & 3 & 0\\ \end{array} \right), \qquad B = \left( \begin{array}{rrr} -11 & 1 \\ 3 & -2 \\ -1 & 1\\ \end{array} \right) \end{equation*}

Then computing each of the entries

\begin{equation*} \begin{split} c_{11} & = (1)(-11) + (-12)(3) + (5)(-1) = - 52 \\ c_{21} & = (0)(-11) + (-2)(3) + ( 4)(-1) = - 10 \\ c_{31} & = (3)(-11) + (3)(3) + (0)(-1) = - 24 \\ c_{12} & = (1)(1) + (-12)(-2) + (5)(1) = 30 \\ c_{22} & = (0)(1) + (-2)(-2) + ( 4)(1) = 8 \\ c_{32} & = (3)(1) + (3)(-2) + (0)(1) = -3 \\ \end{split} \end{equation*}

then the result is

\begin{equation*} AB = \left( \begin{array}{rrr} -52 & 30 \\ -10 & 8 \\ -24 & -3 \\ \end{array} \right). \end{equation*}

The identity matrix

The square matrix \(I\) of size \(n\) is the matrix consisting of 1's in its diagonal and 0's elsewhere:

\begin{equation*} I = \left( \begin{array}{ccc} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots &\ddots & \vdots \\ 0 & 0 & \cdots & 1\\ \end{array} \right) \end{equation*}
Example
Notice that the identity matrix has the property that \(AI = I A = A\).

If we do not specify the size of the matrix \(I\), it should be clear from the context.

Determinants

The determinant is a function that assigns to a square matrix \(A\) of size \(n\), a real number \(\mbox{det}(A)\). It is a fundamental function in matrix analysis and it can be properly defined as an alternating multi-linear function, but we will leave this definition for later.

The determinant is a function \(\det : M^{n\times n} \to \mathbb{R}\) that satisfies the following properties:

  1. For any \(A\in M^{n\times n}\) let \(B\) the square matrix obtained from \(A\) by swapping/interchanging any two rows, then we have \(\det(A) =- \det(B)\).
  2. Let \(r\in \mathbb{R}\), and \(A,B,C\in M^{n\times n}\) such that the three matrices differ only in a single row \(j\). If the \(j\) row of \(C\) can be obtained by adding corresponding entries in the \(j\) th rows of \(A\) and the \(j\) th row with the \(j\) entries of \(rB\), then \[\det(C) = \det(A) + r\det(B).\]
  3. For any \(A\in M^{n\times n}\) we have \(\det(A) = \det(A^T)\).

We say then that the determinant is alternating with respect to permutations of rows, and that is linear on each row. The last point in the proposition indicates that we can change the word rows by columns and the properties will hold accordingly.

From the three points of the proposition one can show that

  • If a matrix \(A\) has one row with all entries equal to \(0\), then \(\det(A) =0\).
  • If a matrix \(A\) has two repeated rows, then \(\det(A) =0\).
  • For any \(r\in \mathbb{R}\), it holds that \(\det(rA) = r^n\det(A)\).

In this section we will show by working some examples, how to compute the determinant of a matrix in an inductive way.

Determinant of a \(1\times 1\) matrix

A real number \(a\in \mathbb{R}\) can be consider as a \(1\times 1\) matrix, and in this case we define \(\mbox{det}(a) = a\).

Determinant of a \(2\times 2\) matrix

Let \(A\) be a \(2\times 2\) matrix

\begin{equation*} A = \left( \begin{array}{ll} a & b \\ c & d \\ \end{array} \right). \end{equation*}

Then the determinant of \(A\) is given by the following formula

\begin{equation*} \mbox{det}(A) = \left| \begin{array}{ll} a & b \\ c & d \\ \end{array} \right| = ad - bc. \end{equation*}
Example
Compute the determinant of the matrix
\begin{equation*} A = \left( \begin{array}{ll} 4 & -1 \\ -2 & 2 \\ \end{array} \right). \end{equation*}

A direct computation shows

\begin{equation*} \mbox{det}(A) = (4)(2) - (-1)(-2) = 8 - 2 = 6. \end{equation*}

Determinant of a \(3\times 3\) matrix

Let \(A\) be a \(3\times 3\) matrix

\begin{equation*} A = \left( \begin{array}{ccc} a & b & c\\ d & e & f \\ g & h & i\\ \end{array} \right). \end{equation*}

Then the determinant of \(A\) is given by the following formula

\begin{equation*} \mbox{det}(A) = \left| \begin{array}{ll} a & b & c\\ d & e & f \\ g & h & i\\ \end{array} \right| = a \left| \begin{array}{ll} e & f \\ h & i \\ \end{array} \right| - b \left| \begin{array}{ll} d & f \\ g & i \\ \end{array} \right| + c \left| \begin{array}{ll} d & e \\ g & h \\ \end{array} \right|. \end{equation*}
Example
compute the determinant of the following matrix
\begin{equation*} \left( \begin{array}{ccc} 0 & -3 & 10 \\ -6 & -9 & -1 \\ 7 & -8 & -6 \\ \end{array} \right). \end{equation*}

Following the formula, we get

\begin{equation*} \begin{split} \left| \begin{array}{ccc} 0 & -3 & 10 \\ -6 & -9 & -1 \\ 7 & -8 & -6 \\ \end{array} \right| & = 0 \left| \begin{array}{ll} -9 & -1 \\ -8 & -6 \\ \end{array} \right| - (-3) \left| \begin{array}{ll} -6 & -1 \\ 7 & -6 \\ \end{array} \right| + 10 \left| \begin{array}{ll} -6 & -9 \\ 7 & -8 \\ \end{array} \right| \\ & = 0 \left[(-9)(-6) - (-1)(-8)\right] + 3 \left[(-6)(-6) - (-1)(7)\right] + 10 \left[(-6)(-8) - (-9)(7)\right] \\ & = 3 (36 + 7) + 10 ( 48 + 63) \\ & = 3 (43) + 10 ( 111) \\ & = 129 + 1110 \\ & = 1239 . \end{split} \end{equation*}

Determinant of a \(4\times 4\) matrix

After discussing the previous example (especially the alternating sign convention) we leave as an exercise to obtain a formula for the determinant of a \(4\times 4\) matrix.

Inverse of a square matrix

Let \(A\) be a square matrix of size \(n\). We say that \(A\) is invertible if there exists a square matrix \(A^{-1}\) that satisfies

\begin{equation*} A A^{-1} = A^{-1} A = I, \end{equation*}

where \(I\) is the identity matrix.

Not every square matrix is invertible, but the following proposition tells us that if a matrix has non-zero determinant, then, it is invertible.

Let \(A\) be a square matrix of size \(n\). If \(\mbox{det}(A) \neq 0\) then \(A\) is invertible with inverse \(A^{-1}\).

Formula for the inverse of a \(2\times 2\) matrix.

Consider the following \(2\times 2\) matrix

\begin{equation*} A = \left( \begin{array}{ll} a & b \\ c & d \\ \end{array} \right). \end{equation*}

If \(\mbox{det}(A) = ad - bc \neq 0\), then the inverse of \(A\) is given by the formula

\begin{equation*} A^{-1} = \frac{1}{ad - bc}\left( \begin{array}{ll} d & -b \\ -c & a \\ \end{array} \right). \end{equation*}
Example
Find \(A^{-1}\) for
\begin{equation*} A = \left( \begin{array}{ll} 1 & 4 \\ -3 & 2 \\ \end{array} \right). \end{equation*}

Using that \(\mbox{det}(A) = (1)(2) - (4)(-3) = 14\), it follows from the formula that

\begin{equation*} A^{-1} = \frac{1}{14}\left( \begin{array}{ll} 2 & -4 \\ 3 & 1 \\ \end{array} \right) = \left( \begin{array}{ll} \frac{1}{7} & -\frac{2}{7} \\ \frac{3}{14} & \frac{1}{14} \\ \end{array} \right) \end{equation*}

Minors, cofactor and adjoint.

In these definitions, we are assuming that the matrices have real coefficients.

Consider a square matrix \(A\) of size \(n\) with entries \(a_{ij}\).

  • The minor \(m_{ij}\) is the

the determinant of the submatrix \(M\) obtained form \(A\) by removing the i-th row and the j-th column.

  • The cofactor \(c_{ij}\) is the minor together with the corresponding sign of the position of \(a_{ij}\), that is \(c_{ij} = (-1)^{i+j}m_{ij}\).
  • From the square matrix \(A\) the cofactor matrix \(C\) is a square matrix of the same size with entries \(c_{ij}\).
  • The adjoint of of a matrix \(A\) is denoted by \(A^*\) or by \(\mbox{adj}(A)\) and is equal to the transpose of the cofactor matrix of A, that is
\begin{equation*} \mbox{Adj}(A) = C^T. \end{equation*}
Example
Compute all minors, and the cofactor matrix for the following matrix
\begin{equation*} A = \left( \begin{array}{rrrr} 6 & -9 & 9 & -9\\ -8 & 3 & 10 & -2\\ 9 & -5 & 4 & -6\\ 7 & 8 & 8 & -9\\ \end{array} \right). \end{equation*}

Note that this is a square matrix of size \(4\), and the computations in smaller or bigger matrices is analogous.

To compute the minor \(m_{11}\) we compute the determinant of the submatrix obtained by removing the first row and the first column:

\begin{equation*} \begin{split} m_{11} & = \left| \begin{array}{rrr} 3 & 10 & -2\\ -5 & 4 & -6\\ 8 & 8 & -9\\ \end{array} \right| \\ & = 3 \left[(4)(-9) - (-6)(8) \right] - 10 \left[(-5)(-9) - (-6)(8) \right] - 2 \left[(-5)(8) - (4)(8) \right] \\ & = 3 (12) - 10 (93) - 2(-72) \\ & = 36 - 930 + 144 \\ & = -930+ 180 \\ & = -750. \end{split} \end{equation*}

To compute the minor \(m_{12}\) we compute the determinant of the submatrix obtained by removing the first row and the second column:

\begin{equation*} \begin{split} m_{12} & = \left| \begin{array}{rrr} -8 & 10 & -2\\ 9 & 4 & -6\\ 7 & 8 & -9\\ \end{array} \right| \\ & = -8 \left[(4)(-9) - (-6)(8) \right] -10 \left[(9)(-9) - (-6)(7) \right] -2 \left[(9)(8 ) - ( 4)(7) \right]\\ &= -8(12) -10 (-39) - 2(44) \\ &= -96 + 390 - 88 \\ &= 206. \end{split} \end{equation*}

In a similar way

\begin{equation*} m_{13} = \left| \begin{array}{rrr} -8 & 3 & -2\\ 9 & -5 & -6\\ 7 & 8 & -9\\ \end{array} \right| = -841, \qquad m_{14} = \left| \begin{array}{rrr} -8 & 3 & 10 \\ 9 & -5 & 4 \\ 7 & 8 & 8 \\ \end{array} \right| = 1514, \end{equation*} \begin{equation*} m_{21} = \left| \begin{array}{rrr} -9 & 9 & -9\\ -5 & 4 & -6\\ 8 & 8 & -9\\ \end{array} \right| = -297, \qquad m_{22} = \left| \begin{array}{rrr} 6 & 9 & -9\\ 9 & 4 & -6\\ 7 & 8 & -9\\ \end{array} \right| = 27, \end{equation*} \begin{equation*} m_{23} = \left| \begin{array}{rrr} 6 & -9 & -9\\ 9 & -5 & -6\\ 7 & 8 & -9\\ \end{array} \right| = -756, \qquad m_{24} = \left| \begin{array}{rrr} 6 & -9 & 9 \\ 9 & -5 & 4 \\ 7 & 8 & 8 \\ \end{array} \right| = 927, \end{equation*} \begin{equation*} m_{31} = \left| \begin{array}{rrr} -9 & 9 & -9\\ 3 & 10 & -2\\ 8 & 8 & -9\\ \end{array} \right| = 1269, \qquad m_{32} = \left| \begin{array}{rrr} 6 & 9 & -9\\ -8 & 10 & -2\\ 7 & 8 & -9\\ \end{array} \right| = -12, \end{equation*} \begin{equation*} m_{33} = \left| \begin{array}{rrr} 6 & -9 & -9\\ -8 & 3 & -2\\ 7 & 8 & -9\\ \end{array} \right| = 1473, \qquad m_{34} = \left| \begin{array}{rrr} 6 & -9 & 9 \\ -8 & 3 & 10 \\ 7 & 8 & 8 \\ \end{array} \right| = -2307, \end{equation*} \begin{equation*} m_{41} = \left| \begin{array}{rrr} -9 & 9 & -9\\ 3 & 10 & -2\\ -5 & 4 & -6\\ \end{array} \right| = 162, \qquad m_{42} = \left| \begin{array}{rrr} 6 & 9 & -9\\ -8 & 10 & -2\\ 9 & 4 & -6\\ \end{array} \right| = 192, \end{equation*} \begin{equation*} m_{43} = \left| \begin{array}{rrr} 6 & -9 & -9\\ -8 & 3 & -2\\ 9 & -5 & -6\\ \end{array} \right| = 309, \qquad m_{44} = \left| \begin{array}{rrr} 6 & -9 & 9 \\ -8 & 3 & 10 \\ 9 & -5 & 4 \\ \end{array} \right| = -609. \end{equation*}

To write the cofactor matrix \(C\), just recall that we have to adjust the sign by using

\begin{equation*} c_{ij} = (-1)^{i+j}m_{ij}, \end{equation*}

getting at the end the matrix

\begin{equation*} C = \left( \begin{array}{rrrr} -750 & -206 & -841 & -1514\\ 297 & 27 & 756 & 927\\ 1269 & 12 & 1473 & 2307\\ -162 & 192 & -309 & -609\\ \end{array} \right). \end{equation*}

Formula for the inverse of a square matrix (of any size)

Let \(A\) be any square matrix with \(\mbox{det}(A)\neq 0\). Then the inverse of \(A\) is given by the formula

\begin{equation*} A^{-1} = \frac{1}{\mbox{det}(A)} \mbox{Adj}(A). \end{equation*}

Remark Another way to say it: the inverse of a matrix with non-zero determinant is given by one over its determinant times the transpose of the cofactor matrix.

  • Example:: Compute the inverse of the following matrix
\begin{equation*} A = \left( \begin{array}{rrrr} 6 & 9 & -9\\ -8 & 10 & -2\\ 7 & 8 & -9\\ \end{array}\right). \end{equation*}

First we compute the determinant of \(A\):

\begin{equation*} \begin{split} \mbox{det}(A) & = \left| \begin{array}{rrrr} 6 & 9 & -9\\ -8 & 10 & -2\\ 7 & 8 & -9\\ \end{array}\right| \\ & = 6 \left[(10)(-9) - (-2)(8) \right] -9 \left[(-8)(-9) - (-2)(7) \right] -9 \left[(-8)(8) - (10)(7) \right] \\ & = 6(-74) - 9(86) - 9(-134)\\ & = 6(-74) - 9(-48)\\ & = - 444 + 432\\ & = -12. \end{split} \end{equation*}

Now we proceed to compute the cofactor matrix, recall that we have to keep track of the alternating signs

\begin{equation*} m_{11} = (-1)^{2}\left| \begin{array}{rrr} 10 & -2\\ 8 & -9\\ \end{array} \right| = -74, \qquad m_{12} = (-1)^3\left| \begin{array}{rrr} -8 & -2\\ 7 & -9\\ \end{array} \right| = - 86, \end{equation*} \begin{equation*} m_{13} = (-1)^{4}\left| \begin{array}{rrr} -8 & 10 \\ 7 & 8 \\ \end{array} \right| = - 134, \qquad m_{21} = (-1)^3\left| \begin{array}{rrr} 9 & -9\\ 8 & -9\\ \end{array} \right| = 9 \end{equation*} \begin{equation*} m_{22} = (-1)^{4}\left| \begin{array}{rrr} 6 & -9\\ 7 & -9\\ \end{array} \right| = 9 \qquad m_{23} = (-1)^5\left| \begin{array}{rrr} 6 & 9 \\ 7 & 8 \\ \end{array} \right| = 15 \end{equation*} \begin{equation*} m_{31} = (-1)^{4}\left| \begin{array}{rrr} 9 & -9\\ 10 & -2\\ \end{array} \right| = 72 \qquad m_{32} = (-1)^5\left| \begin{array}{rrr} 6 & -9\\ -8 & -2\\ \end{array} \right| = 84 \end{equation*} \begin{equation*} m_{33} = (-1)^{6}\left| \begin{array}{rrr} 6 & 9 \\ -8 & 10 \\ \end{array} \right| = 132 \end{equation*}

Then the cofactor matrix is

\begin{equation*} C = \left( \begin{array}{rrrr} -74 & -86 & -134\\ 9 & 9 & 15\\ 72 & 84 & 132\\ \end{array}\right) \end{equation*}

Next, the adjoint is the transpose of the cofactor matrix:

\begin{equation*} \mbox{Adj}(A) = C^T = \left( \begin{array}{rrrr} -74 & 9 & 72\\ -86 & 9 & 84\\ -134 & 15 & 132\\ \end{array}\right). \end{equation*}

Finally, we can write the inverse matrix

\begin{equation*} \begin{split} A^{-1} & = \frac{1}{\mbox{det}(A)}{\mbox{Adj}}(A) \\ & = -\frac{1}{12}\left( \begin{array}{rrrr} -74 & 9 & 72\\ -86 & 9 & 84\\ -134 & 15 & 132\\ \end{array}\right). \end{split} \end{equation*}

System of linear equations

In this section we are considering a system of \(n\) linear equations with \(m\) number of unknowns or variables, which can be written as

\begin{equation*} \begin{array}{cclr} a_{11}x_1 &+ \cdots &+ a_{1m}x_{m} & = b_1 \\ \vdots &+ \cdots &+ \vdots & = \vdots \\ a_{n1}x_1 &+ \cdots &+ a_{nm}x_{m} & = b_n. \\ \end{array} \end{equation*}

One can express such a system in terms of a matrix \(A\) of size \(n\times m\) with entries \(a_{ij}\). For this, we consider the vector of unknowns as the one column matrix with entries \(\vec{x} = (x_1,x_2,\ldots,x_m)\), and with vector value \(\vec{b} = (b_1,b_2,\ldots,b_n)\), also written as a one column matrix). Then the previous system of linear equations can be written as

\begin{equation*} A\vec{x} = \vec{b}. \end{equation*}

Additionally we have

  • The system \(A\vec{x} = \vec{0}\) is called homogeneous, and
  • for \(\vec{b} \neq \vec{0}\), system \(A\vec{x} = \vec{b}\) is called non-homogeneous.
Example
Write in matrix notation the following systems of equations:
\begin{equation*} \left\{ \begin{array}{rr} x + y & = 1 \\ x - y & = 2 \\ \end{array} \right. \end{equation*}

The previous system of \(2\) equations with \(2\) unknowns in matrix notation gives

\begin{equation*} \left( \begin{array}{rr} 1 & 1 \\ 1 & -1\\ \end{array} \right) \left( \begin{array}{rr} x \\ y\\ \end{array} \right) = \left( \begin{array}{rr} 1 \\ 2\\ \end{array} \right) \end{equation*}
Example
Write in matrix notation the following system of equations:
\begin{equation*} \left\{ \begin{split} x + y + z & = 1 \\ -4 y + z & = 1 \\ 2 x - y & = 2 \\ - x - y - z & = -5 \\ \end{split} \right. \end{equation*}

Then this ca be written in terms of a \(4\times 3\) matrix as \(A\vec{x} = \vec{b}\) as follows

\begin{equation*} \left( \begin{array}{rrr} 1 & 1 & 1\\ 0 & -4 & 1\\ 2 & -1 & 0\\ -1 & -1 & -1\\ \end{array} \right) \left( \begin{array}{r} x\\ y\\ z \end{array} \right) = \left( \begin{array}{r} 1\\ 1\\ 2\\ -5 \end{array} \right) \end{equation*}

Augmented matrix

Let \(A\vec{x} = \vec{b}\) is a system of \(n\) linear equations with \(m\) unknowns. The augmented matrix representing this system is the defined as

\begin{equation*} A = \left( \begin{array}{ccc|c} a_{11} & \cdots & a_{1m} & b_{1} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nm,} & b_{n} \\ \end{array} \right), \end{equation*}

and it is usually referred as \([A|b]\).

In the case \(\vec{b} = \vec{0}\), then we use \(A\) also instead of \([A | 0]\).

Solving a system of equations using the formula for the inverse

This method works only when the number of equations equals the number of unknowns.

Consider a system of \(n\) equations with \(n\) unknowns. In other words, the system of equations is represented by a square matrix \(A\) of size \(n\). If \(\mbox{det}(A) \neq 0\) the system of equations

\begin{equation*} A\vec{x} = \vec{b}, \end{equation*}

has a unique solution give by

\begin{equation*} \vec{x} = A^{-1}\vec{b}, \end{equation*}

where \(A^{-1} = \frac{1}{\mbox{det}(A)} \mbox{Adj}(A)\).

Example
Now solve the system of equations using the inverse formula method.
\begin{equation*} \left\{ \begin{split} x + y + z = -1\\ 2x + 3z = 1\\ -x + 5y + 3z = -2\\ \end{split} \right. \end{equation*}

First we identify that

\begin{equation*} A = \left( \begin{array}{rrr} 1 & 1 & 1 \\ 2 & 0 & 3 \\ -1 & 5 & 3 \\ \end{array} \right), \quad \vec{x} = \left( \begin{array}{r} x \\ y \\ z \\ \end{array} \right), \quad \vec{b} = \left( \begin{array}{r} -1 \\ 1 \\ -2 \\ \end{array} \right). \end{equation*}

Notice that

\begin{equation*} \begin{split} \mbox{det}(A) & = \left| \begin{array}{rrr} 1 & 1 & 1 \\ 2 & 0 & 3 \\ -1 & 5 & 3 \\ \end{array} \right| \\ & = \left[-15 \right] -\left[9 \right] +\left[ 10\right] \\ & = -14. \end{split} \end{equation*}

Since the determinant is non-zero, we can proceed to calculate \(A^{-1}\), we start with the computation of the cofactor matrix, you can verify that

\begin{equation*} C = \left( \begin{array}{rrr} -15 & -9 & 10 \\ 2 & 4 & -6 \\ 3 & -1 & -2 \\ \end{array} \right) , \end{equation*}

Then the adjoint since the adjoint \(\mbox{Adj}(A) = C^T\) using the formula we have

\begin{equation*} A^{-1} = - \frac{1}{14} \left( \begin{array}{rrr} -15 & -9 & 10 \\ 2 & 4 & -6 \\ 3 & -1 & -2 \\ \end{array} \right)^T = - \frac{1}{14} \left( \begin{array}{rrr} -15 & 2 & 3 \\ -9 & 4 & -1 \\ 10 & -6 & -2 \\ \end{array} \right). \end{equation*}

The the solutio to the system of equations is given by

\begin{equation*} \vec{x} = A^{-1}\vec{b} = - \frac{1}{14} \left( \begin{array}{rrr} -15 & 2 & 3 \\ -9 & 4 & -1 \\ 10 & -6 & -2 \\ \end{array} \right) \left( \begin{array}{r} -1 \\ 1 \\ -2 \\ \end{array} \right) = -\frac{1}{14} \left( \begin{array}{r} 11\\ 15 \\ -12 \\ \end{array} \right) = \left( \begin{array}{r} -\frac{11}{14} \\ -\frac{15}{14} \\ \frac{6}{7} \\ \end{array} \right) \end{equation*}

since \(\vec{x} = (x,y,z)\) this shows that the unique solution is

\begin{equation*} x = -\frac{11}{14}, \quad y = -\frac{15}{14}, \quad z = \frac{6}{7}. \end{equation*}

Elementary row operations

For a matrix \(A\) or for an augmented matrix \([A|b]\), the following operations are called elementary row operations :

  1. Multiply a row through by a non-zero constant.
  2. Interchange/permute two rows.
  3. Add to a row a constant times another row.
Example
Apply the following sequence of elementary row operations:
  1. multiply the first row by 3, (indicated by \(R_1 \to 3R_1\)),
  2. interchange the first row with the third row (indicated by \(R_1 \leftrightarrow R_3\)),
  3. add to the second row \(2\) times the third row (indicated by \(R_2 \to R2 + 2R_3\)).
\begin{equation*} \left( \begin{array}{rrr} 1 & 2 & 1\\ 0 & -4 & 1\\ 2 & -1 & 0\\ -1 & -1 & -1\\ \end{array} \right) \overrightarrow{\tiny{R_1 \to 3R_1}} \left( \begin{array}{rrr} 3 & 6 & 3\\ 0 & -4 & 1\\ 2 & -1 & 0\\ -1 & -1 & -1\\ \end{array} \right) \overrightarrow{\tiny{R_1 \leftrightarrow R_3}} \left( \begin{array}{rrr} 2 & -1 & 0\\ 0 & -4 & 1\\ 3 & 6 & 3\\ -1 & -1 & -1\\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 + 2R_3}} \left( \begin{array}{rrr} 2 & -1 & 0\\ 6 & 8 & 7 \\ 3 & 6 & 3\\ -1 & -1 & -1\\ \end{array} \right) \end{equation*}

Row Echelon Form (REF) and Reduce Row Echelon Form (RREF)

A matrix is in row echelon form (REF) if

  • All rows having only zero entries are at the bottom.
  • The leading entry of every nonzero row, (also called the pivot), is on the right of the leading entry of every row above.


A matrix is in reduced row echelon form (RREF) if it satisfies the following conditions:

  • It is in row echelon form.
  • The leading entry in each nonzero row is 1 (called a leading one).
  • Each column containing a leading 1 has zeros in all its other entries, above and below.
Example
The following matrix is in Row Echelon Form, but it is NOT in Row Reduced Echelon Form:
\begin{equation*} \left( \begin{array}{rrr} 2 & -1 & 0\\ 0 & 5 & 3 \\ 0 & 0 & 1\\ 0 & 0 & 0\\ \end{array} \right) \end{equation*}
Example
The following matrix is in Row Reduced Echelon Form:
\begin{equation*} \left( \begin{array}{rrr} 1 & 0 & \frac{1}{2}\\ 0 & 1 & 0\\ 0 & 0 & 0\\ \end{array} \right). \end{equation*}

To each elementary row operation \(e\) there corresponds an elementary row operation \(e_1\), of the same type as \(e\), such that

\begin{equation*} e_1(e(A)) = e(e_1(A)) = A, \end{equation*}

for each \(A\).

In other words, the inverse operation of an elementary row operation exists and is an elementary row operation of the same type.


If \(A\) and \(B\) are \(n\times m\) matrices, we say that \(B\) is row-equivalent to \(A\) if \(B\) can be obtained from \(A\) by a finite sequence of elementary row operations.


If \(A\) and \(B\) are row-equivalent \(n\times m\) matrices, the homogeneous systems of linear equations \(A\vec{x} = \vec{0}\) and \(B\vec{x} = \vec{0}\) have exactly the same solutions.


Every \(n\times m\) matrix over the field \(F\) is row-equivalent to a row echelon form matrix. (This is obtained after applying the Gauss elimination algorithm)


Every \(n \times m\) matrix \(A\) is row-equivalent to one and only one row reduced echelon form matrix. (This is obtained after applying the Gauss-Jordan elimination algorithm)

The following examples will illustrate the subtle difference between the Gauss algorithm and the Gauss-Jordan algorithm.

Example
Apply the Gauss elimination algorithm to the following matrix
\begin{equation*} \left( \begin{array}{rrrr} 2 & -1 & 3 & 2 \\ 1 & 4 & 0 & -1 \\ 2 & 6 & -1 & 5 \\ \end{array} \right) \overrightarrow{\tiny{R_1 \leftrightarrow R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 2 & -1 & 3 & 2 \\ 2 & 6 & -1 & 5 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 - 2R_1} \\ \tiny{R_3 \to R_3 - 2R_1} } \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & -9 & 3 & 4 \\ 0 & -2 & -1 & 7 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to -\frac{1}{9}R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & -2 & -1 & 7 \\ \end{array} \right) \overrightarrow{\tiny{R_3 \to R_3 + 2R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & 0 & -\frac{5}{3}& \frac{55}{9} \\ \end{array} \right) \overrightarrow{\tiny{R_3 \to -\frac{3}{5}R_3}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & 0 & 1& -\frac{11}{3} \\ \end{array} \right) \end{equation*}

Then, the Gauss elimination leads to the matrix in Row Echelon Form (REF):

\begin{equation*} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & 0 & 1& -\frac{11}{3} \\ \end{array} \right) \end{equation*}
Example
Apply the Gauss-Jordan elimination algorithm to the same matrix as the previous example:
\begin{equation*} \left( \begin{array}{rrrr} 2 & -1 & 3 & 2 \\ 1 & 4 & 0 & -1 \\ 2 & 6 & -1 & 5 \\ \end{array} \right) \overrightarrow{\tiny{R_1 \leftrightarrow R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 2 & -1 & 3 & 2 \\ 2 & 6 & -1 & 5 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 - 2R_1} \\ \tiny{R_3 \to R_3 - 2R_1} } \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & -9 & 3 & 4 \\ 0 & -2 & -1 & 7 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to -\frac{1}{9}R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & -2 & -1 & 7 \\ \end{array} \right) \overrightarrow{\tiny{R_3 \to R_3 + 2R_2}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & 0 & -\frac{5}{3}& \frac{55}{9} \\ \end{array} \right) \overrightarrow{\tiny{R_3 \to -\frac{3}{5}R_3}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & -\frac{1}{3} & -\frac{4}{9} \\ 0 & 0 & 1& -\frac{11}{3} \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 + \frac{1}{3}R_3}} \left( \begin{array}{rrrr} 1 & 4 & 0 & -1 \\ 0 & 1 & 0 & -\frac{5}{3} \\ 0 & 0 & 1& -\frac{11}{3} \\ \end{array} \right) \overrightarrow{\tiny{R_1 \to R_1 - 4R_2}} \left( \begin{array}{rrrr} 1 & 0 & 0 & \frac{17}{3} \\ 0 & 1 & 0 & -\frac{5}{3} \\ 0 & 0 & 1& -\frac{11}{3} \\ \end{array} \right) \end{equation*}

Notice that the difference between this and the previous example, are the last two row operations. Then we conclude that the Gauss-Jordan elimination algorithm leads to the matrix in Reduce Row Echelon Form (RREF)

\begin{equation*} \left( \begin{array}{ccc} 0 & 0 & 1 & -\frac{11}{3} \\ 1 & 0 & 0 & \frac{17}{3} \\ 0 & 1 & 0 & - \frac{5}{3} \\ \end{array} \right) \end{equation*}

Solving a system of equations using Gauss-Jordan elimination

Example
Solve using the Gauss-Jordan elimination the following system of equations
\begin{equation*} \left\{ \begin{split} x + y + z = -1\\ 2x + 3z = 1\\ -x + 5y + 3z = -2\\ \end{split} \right. \end{equation*}

We will apply the Gauss-Jordan elimination algorithm to the augmented matrix \([A|b]\) as follows

\begin{equation*} \left( \begin{array}{rrr|r} 1 & 1 & 1 & -1\\ 2 & 0 & 3 & 1\\ -1 & 5 & 3 & -2\\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 - 2R_1} \\ \tiny{R_3 \to R3 + R_1}} \left( \begin{array}{rrr|r} 1 & 1 & 1 & -1\\ 0 & -2 & 1 & 3\\ 0 & 6 & 4 & -3\\ \end{array} \right) \overrightarrow{\tiny{R_3 \to R_3 + 3R_2}} \left( \begin{array}{rrr|r} 1 & 1 & 1 & -1\\ 0 & -2 & 1 & 3\\ 0 & 0 & 7 & 6\\ \end{array} \right) \overrightarrow{\tiny{R_2 \to -\frac{1}{2}R_2} \\ \tiny{R_3 \to \frac{1}{7}R_3}} \left( \begin{array}{rrr|r} 1 & 1 & 1 & -1\\ 0 & 1 & -\frac{1}{2} & -\frac{3}{2}\\ 0 & 0 & 1 & \frac{6}{7} \\ \end{array} \right) \overrightarrow{\tiny{R_1 \to R_1 - R_2}} \left( \begin{array}{rrr|r} 1 & 0 & \frac{3}{2} & \frac{1}{2}\\ 0 & 1 & -\frac{1}{2} & -\frac{3}{2}\\ 0 & 0 & 1 & \frac{6}{7} \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 + \frac{1}{2}R_3} \\ \tiny{R_1 \to R_1 - \frac{1}{3}R_3}} \left( \begin{array}{rrr|r} 1 & 0 & 0 & -\frac{11}{14}\\ 0 & 1 & 0 & -\frac{15}{14}\\ 0 & 0 & 1 & \frac{6}{7} \\ \end{array} \right), \end{equation*}

the solution is then

\begin{equation*} x = -\frac{11}{14}, \quad y = -\frac{15}{14}, \quad z = \frac{6}{7}. \end{equation*}

Solution of a system of equations with free variables

In this section we will use the Gaus-Jordan elimination to find multiple solutions to a system of linear equaitons. Here the matrix representing the system of equations is of any size \(n\times m\), including the cases when the matrix is square.

Example
Find all the solutions to the system of equaitons
\begin{equation*} \left\{ \begin{split} x - 2y + z = -1\\ 2x -4 y + 3z = 1\\ \end{split} \right. \end{equation*}

Writing the augmented matrix \([A|b]\) and applying the Gauss-Jordan elimination we get

\begin{equation*} \left( \begin{array}{rrr|r} 1 & -2 & 1 & -1\\ 2 &-4 & 3 & 1 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 - 2R_1}} \left( \begin{array}{rrr|r} 1 & -2 & 1 & -1\\ 0 &0 & 1 & 3 \\ \end{array} \right) \overrightarrow{\tiny{R_1 \to R_1 - R_3}} \left( \begin{array}{rrr|r} 1 & -2 & 0 & -4\\ 0 &0 & 1 & 3 \\ \end{array} \right) \end{equation*}

If you have clear that the reduced augmented matrix is also representign a system of equations which is equivallent to the original one, then one notice that this is the same as writing \(x = -4 +2y\) and \(z = 3\). Writing this in column vector notation we see that

\begin{equation*} \vec{x}= \left( \begin{array}{ccc} x\\ y \\ z\\ \end{array} \right) = \left( \begin{array}{ccc} -4 + 2y\\ y \\ 3\\ \end{array} \right) = \left( \begin{array}{ccc} -4\\ 0\\ 3\\ \end{array} \right) + \left( \begin{array}{c} 2y\\ y \\ 0\\ \end{array} \right) = \left( \begin{array}{ccc} -4\\ 0\\ 3\\ \end{array} \right) + y \left( \begin{array}{ccc} 2\\ 1 \\ 0\\ \end{array} \right), \end{equation*}

here \(y\in \mathbb{R}\) is considered a free variable, so for every value of \(y\) we have a vector that solves our system of equations.

Linear transformations between vector spaces

Let \(V\) and \(W\) be two vector spaces over a field \(F\). A map \(T : V \to W\) is called a linear transformation if it satisfies the following two properties:

  1. \(T\) is homogeneous: \(\forall \alpha \in F, \forall \vec{x}\in V : T(\alpha \vec{x}) = \alpha T(\vec{x})\).
  2. \(T\) is additive: \(\forall \vec{x},\vec{y} \in V : T( \vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})\).
Example
Show that the map \(T:\mathbb{R}^2 \to \mathbb{R}^3\) given by \(T(x_1, x_2) = (2x_1 + x_2 , x_2, x_1 - x_2)\), is a linear transformation.

We will consider \(\alpha \in \mathbb{R}\), \(\vec{x} = (x_1, x_2)\) and \(\vec{y}= (y_1, y_2)\) any two vectors in \(\mathbb{R}^2\).

  1. To show that \(T\) is homogeneous notice that
\begin{equation*} \begin{split} T(\alpha \vec{x})& = T(\alpha x_1, \alpha x_2)\\ & = (2\alpha x_1 + \alpha x_2, \alpha x_2, \alpha x_1 - \alpha x_2)\\ & = (\alpha [2x_1 + x_2] ,\alpha x_2, \alpha [ x_1 - x_2]) \\ & = \alpha (2x_1 + x_2 , x_2, x_1 - x_2) \\ & = \alpha T(\vec{x}). \end{split} \end{equation*}

This shows that \(T\) is homogeneous.

  • To show that \(T\) is additive notice that
\begin{equation*} \begin{split} T(\vec{x} + \vec{y})& = T( x_1 + y_1, x_2 + y_2)\\ & = (2[x_1 + y_1] + [ x_2 + y_2], [x_2 + y_2] , [ x_1 + y_1 ] - [ x_2 + y_2])\\ & = ([2x_1 + x_2] + [2 y_1 + y_2)], x_2 + y_2 , [ x_1 - x_2 ] + [ y_1 - y_2])\\ & = (2x_1 + x_2, x_2 , x_1 - x_2 ) + (2 y_1 + y_2, y_2 , y_1 - y_2) \\ & = T(\vec{x} + T(\vec{y}). \end{split} \end{equation*}

This shows that \(T\) is additive. The points (1) and (2) show that \(T\) is a linear transformation.

The matrix representing a linear transformation

In this section we consider the linear transformation \(T :\mathbb{R}^3 \to \mathbb{R}^2\) given by

\begin{equation*} T(x_1,x_2,x_3) = (2x_1, x_2 + x_3). \end{equation*}
  1. Give the matrix \(A\) representing the linear transformation \(T\) using the standard (canonical) basis of \(\mathbb{R}^3\) and \(\mathbb{R}^2\).
  2. Consider \(\mathcal{B}_1 = \{ (1,2,0), (1,1,1), (0,0,1)\}\) a basis for \(\mathbb{R}^3\) and \(\mathcal{B}_2 = \{ (1,2), (0,1)\}\) a basis for \(\mathbb{R}^2\). Find the matrix \(B\) representing \(T\) using the basis \(\mathcal{B}_1\) and \(\mathcal{B}_2\).

Matrix of \(T\) in the canonical basis

The canonical basis for \(\mathbb{R}^3\) (the domain of \(T\)) is

\begin{equation*} \vec{e_1} = (1,0,0),\quad \vec{e_2} = (0,1,0),\quad \vec{e_3} = (0,0,1). \end{equation*}

Use the expressio \(T(x_1,x_2,x_3) = (2x_1, x_2 + x_3)\) to compute the following

\begin{equation*} \begin{split} T(\vec{e}_1) &= (2,0),\quad \mbox{( this will be the 1st colmun of our matrix)}\\ T(\vec{e}_2) &= (0,1),\quad \mbox{( this will be the 2nd colmun of our matrix)}\\ T(\vec{e}_3) &= (0,1),\quad \mbox{( this will be the 3rd colmun of our matrix)} \end{split} \end{equation*}

The matrix \(A\) representing \(T\) in the canonical basis is:

\begin{equation*} A = \left( \begin{array}{ccc} 2 & 0 & 0\\ 0 & 1 & 1\\ \end{array} \right). \end{equation*}

Matrix of \(T\) for general basis.

Since the basis is not the canonical basis, first we take the basis of your domain, in this case the vectors in \(\mathcal{B}_1\) and use the expression \(T(x_1,x_2,x_3) = (2x_1, x_2 + x_3)\) to compute the following

\begin{equation*} \begin{split} T(1,2,0) &= (2,2),\\ T(1,1,1) &= (2,2),\\ T(0,0,1) &= (0,1). \end{split} \end{equation*}

Now, we have to write each one of the results in our new basis. This means that each vector should be written as a linear combination of elements of \(\mathcal{B}_2\):

\begin{equation*} \begin{split} T(1,2,0) &= (2,2) = 2\cdot(1,2) - 2\cdot (0,1),\quad\mbox{The coefficients will be 1st the column of our matrix} \\ T(1,1,1) &= (2,2) = 2\cdot(1,2) - 2\cdot (0,1),\quad\mbox{The coefficients will be 2nd the column of our matrix} \\ T(0,0,1) &= (0,1) = 0\cdot(1,2) + 1\cdot (0,1),\quad\mbox{The coefficients will be 3rd the column of our matrix} \\ \end{split} \end{equation*}

The matrix \(B\) representing \(T\) in the canonical basis \(\mathcal{B}_1\) and \(\mathcal{B}_2\) is

\begin{equation*} B = \left( \begin{array}{ccc} 2 & 2 & 0\\ -2 & -2 & 1\\ \end{array} \right). \end{equation*}

After this exercise, you should have clear that the matrix representation of a linear transformation \(T:\mathbb{R}^m\to \mathbb{R}^n\) is a matrix of size \(n\times m\) and it depends on the basis for \(\mathbb{R}^n\) and \(\mathbb{R}^m\).

The kernel, Image, rank and nullity

Let \(A\) be any \(n \times m\) matrix. The kernel of \(A\) is defined as the set

\begin{equation*} \mbox{ker}(A) = \left\{ \vec{x}\in \mathbb{R}^m : A\vec{x} = \vec{0} \in\mathbb{R}^n \right\}. \end{equation*}

We also define the image of \(A\) as the set in \(\mathbb{R}^n\) given by

\begin{equation*} \mbox{Im}(A) = \left\{ A\vec{x} \in \mathbb{R}^n : \vec{x} \in \mathbb{R}^m \right\}. \end{equation*}

If \(T:\mathbb{R}^m \to \mathbb{R}^n\) is a linear transformation, the kernel and image of \(T\) are defined as the kernel and image of its matrix representation.

Additionally is possible to show that

  1. \(\mbox{ker}(A)\) is a linear subspace of \(\mathbb{R}^m\) and its dimension is called the nullity of \(A\).
  2. \(\mbox{Im}(A)\) is a linear subspace of \(\mathbb{R}^n\) and its dimension is called the rank of \(A\).

In the following lines, we will work to find the Kernel, rank and nullity of the following matrix

\begin{equation*} A = \left( \begin{array}{ccc} 0 & 1 & 2& -1 & 3 \\ 1 & -1 & -3& 1 & 1 \\ 4 & 0 & 0& 1 & -2\\ 2 & 3 & 8& -2& -1\\ \end{array} \right). \end{equation*}

How to find the kernel

To find the kernel of a matrix, is to find all the solutions to the equation

\begin{equation*} A\vec{x} = \vec{0}. \end{equation*}

To get the kernel of a matrix \(A\), one has to:

  1. Simplify \(A\) into a Reduce Row Echelon Form (I will call it \(B\)),
  2. Write the solutions of \(B\vec{x}=\vec{0}\), as linear combinations of free variables: \(\vec{x} = t_1\vec{v}_1 + \cdots + t_k \vec{v}_k\).
  3. Then the Kernel of \(A\) is the vector space generated by \(\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_k\).
  4. The nullity in this cases will be given by \(k\), (just make sure that the \(\vec{v}_j\) 's are linearly independent.

Of course, \(A\) is not a square matrix, then computing the determinant is not an option here. What we do is Gauss-Jordan elimination using elementary operations by rows, until we reach the Reduced Row Echelon Form of the matrix. (In one of the lectures we discussed that the RREF of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it)

\begin{equation*} A = \left( \begin{array}{ccc} 0 & 1 & 2& -1 & 3 \\ 1 & -1 & -3& 1 & 1 \\ 4 & 0 & 0& 1 & -2\\ 2 & 3 & 8& -2& -1\\ \end{array} \right) \rightarrow \cdots \mbox{after many elementary row operations} \cdots \rightarrow \left( \begin{array}{ccc} 1 & 0 & 0& 1/4 & -1/2 \\ 0 & 1 & 0& -3/2 & 12 \\ 0 & 0 & 1& 1/4 & -9/2\\ 0 & 0 & 0& 0 & 0\\ \end{array} \right). \end{equation*}

After some practice, you will notice that the last matrix is telling us that if the (column) vectors \(\vec{x} = (x_1,x_2,x_3,x_4,x_5)\) are the solutions to \(A\vec{x}=\vec{0}\), then \(x_1, x_2\) and \(x_3\) can be written in terms of (the free variables) \(x_4\) and \(x_5\). In column notation:

\begin{equation*} \vec{x} = \left( \begin{array}{ccc} -\frac{1}{4} x_{4} + \frac{1}{2}x_5 \\ \frac{3}{2} x_{4} -12 x_5 \\ -\frac{1}{4} x_{4} + \frac{9}{2}x_5 \\ x_4 \\ x_5 \\ \end{array} \right). \end{equation*}

Now you have to use the vector addition, factorisation of scalars, and re-write the previous expression as a linear combination involving \(x_4\) and \(x_5\) as coefficients:

\begin{equation*} \vec{x} = \left( \begin{array}{rrr} -\frac{1}{4} x_{4} + \frac{1}{2}x_5 \\ \frac{3}{2} x_{4} -12 x_5 \\ -\frac{1}{4} x_{4} + \frac{9}{2}x_5 \\ x_4 \\ x_5 \\ \end{array} \right) = x_4 \left( \begin{array}{rrr} -\frac{1}{4} \\ \frac{3}{2} \\ -\frac{1}{4} \\ 1 \\ 0 \\ \end{array} \right) + x_5 \left( \begin{array}{rrr} \frac{1}{2} \\ -12 \\ \frac{9}{2} \\ 0 \\ 1 \\ \end{array} \right). \end{equation*}

Finally we say that the Kernel of \(A\) is the span of these two vectors:

\begin{equation*} \mbox{ker}(A) = \mbox{span}\left\{ \left( \begin{array}{rrr} -\frac{1}{4} \\ \frac{3}{2} \\ -\frac{1}{4} \\ 1 \\ 0 \\ \end{array} \right), \left( \begin{array}{rrr} \frac{1}{2} \\ -12 \\ \frac{9}{2} \\ 0 \\ 1 \\ \end{array} \right)\right\} \end{equation*}

How to find the Rank.

  1. Simplify \(A\) into a Reduce Row Echelon Form (I will call it \(B\)),
  2. The rank is the number of non-all-zero rows.

In our case, the Reduce Row Echelon Matrix we have is

\begin{equation*} \left( \begin{array}{ccc} 1 & 0 & 0& 1/4 & -1/2 \\ 0 & 1 & 0& -3/2 & 12 \\ 0 & 0 & 1& 1/4 & -9/2\\ 0 & 0 & 0& 0 & 0\\ \end{array} \right). \end{equation*}

Then notice:

  • The first row is non-zero (some entries are different from zero)
  • The second row is non-zero (some entries are different from zero)
  • The third row is non-zero (some entries are different from zero)
  • The fourth row is zero (all entries are zero)

There are three non-zero rows and hence, the Rank of \(A\) is \(3\).

Remark There is another way to compute the rank of a matrix using determinant of sub-matrices. The rank of a matrix is \(k\) if there is a \(k\times k\) sub-matrix of \(A\) with non-zero determinant but any other larger submatrix has zero determinant.

The dimension theorem

This is one of the most important results in Linear Algebra

(Matrix form) Let \(A\) be a \(n\times m\) matrix. Then the number of columns equals the sum of the nullity and the rank of \(A\):

\begin{equation*} m = \mbox{dim}(\mbox{ker}(A)) + \mbox{dim}(\mbox{Im}(A)). \end{equation*}

(Linear transformation form) Let \(T: V\to W\) a linear transformation between two vectors spaces \(V\) and \(W\). Then the dimension of the domain is equal to the sum of the nullity and the rank of \(T\):

\begin{equation*} \mbox{dim}(V) = \mbox{dim}(\mbox{ker}(T)) + \mbox{dim}(\mbox{Im}(T)). \end{equation*}
Example
One can verify the dimension theorem for the matrix we have been working with
\begin{equation*} A = \left( \begin{array}{rrr} 0 & 1 & 2& -1 & 3 \\ 1 & -1 & -3& 1 & 1 \\ 4 & 0 & 0& 1 & -2\\ 2 & 3 & 8& -2& -1\\ \end{array} \right) \end{equation*}

Recall, the nullity is simply the dimension of the Kernel. The dimension theorem that says

(the number of columns of the matrix) = Nullity + Rank.

In our case this is simply: \(5 = 2 + 3\).

Eigenvalues and eigenspaces

Let \(T: V\to V\) be a linear operator where \(V\) is a vector space over a field \(F\). The vector \(\vec{x}\in V\) is called eigenvector if \(\vec{x} \neq \vec{0}\), and there exists an element of the field \(\lambda\in F\) (which we will call eigenvalue and it may be zero) such that the following identity holds:

\begin{equation*} T(\vec{x}) = \lambda\vec{x}. \end{equation*}

For square matrices \(A\) the definition of an eigenvector and eigenvalue follows naturally writing using column vectors and writing the previous equation as

\begin{equation*} A\vec{x} = \lambda\vec{x}. \end{equation*}

An important concept is that of the characteristic polynomial

Let \(A\) be a square matrix of size \(n\). Then we define

  • The characteristic polynomial of \(A\) as \(p(\lambda) = \mbox{det}(A - \lambda I)\).
  • The characteristic equation of \(A\) as \(p(\lambda) = 0\).
Example
Find the eigenvalues and the eigenspaces of the matrix
\begin{equation*} \left(\begin{array}{rr} 5 & -2 \\ 1 & 2 \end{array} \right). \end{equation*}

We will follow the following steps:

  1. Compute the characteristic polynomial,
  2. Solve the characteristic equations,
  3. For each solution \(\lambda_j\) of the characteristic equation, find the solutions to \((A - \lambda I)\vec{x} = \vec{0}\).

Step 1. The characteristic polynomial is given by

\begin{equation*} \begin{split} p(\lambda) = \mbox{det}(A - \lambda I) & = \left|\begin{array}{rr} 5- \lambda & -2 \\ 1 & 2 - \lambda \\ \end{array} \right| \\ & = (5- \lambda) (2- \lambda ) + 2 \\ & = \lambda^2 -7\lambda + 10 + 2\\ & = \lambda^2 -7\lambda + 12 \\ & = (\lambda - 4) (\lambda - 3) \end{split} \end{equation*}

Step 2. From the last factorisation we have that the solutions to the characteristic equation \(p(\lambda)=0\) are

\begin{equation*} \lambda_1 = 3, \quad \lambda_2 = 4. \end{equation*}

Step 3. The eigenspace for \(\lambda_1 = 3\) is simply the kernel of \(A - 3I\), for this we can use Gauss-Jordan elimination

\begin{equation*} A - 3I = \left(\begin{array}{rr} 5- \lambda & -2 \\ 1 & 2 - \lambda \\ \end{array} \right) = \left(\begin{array}{rr} 5- 3 & -2 \\ 1 & 2 - 3 \\ \end{array} \right) = \left(\begin{array}{rr} 2 & -2 \\ 1 & -1 \\ \end{array} \right) \overrightarrow{\tiny{R_1 \to \frac{1}{2}R_1}} \left(\begin{array}{rr} 1 & -1 \\ 1 & -1 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 -R_1}} \left(\begin{array}{rr} 1 & -1 \\ 0 & 0 \\ \end{array} \right) \end{equation*}

This implies that \(x = y\), which in colmun vector notation gives

\begin{equation*} \vec{x} = \left(\begin{array}{rr} x \\ y \\ \end{array} \right) = \left(\begin{array}{rr} y \\ y \\ \end{array} \right) = y \left(\begin{array}{rr} 1 \\ 1 \\ \end{array} \right) \end{equation*}

Then, the eigenspace for the eigenvalue \(\lambda_1 = 3\) is given by \(\mbox{span}\{(1,1)\}\).

Step 3 part 2. The eigenspace for \(\lambda_2 = 4\) is simply the kernel of \(A - 4I\), proceed as before

\begin{equation*} A - 4I = \left(\begin{array}{rr} 5- \lambda & -2 \\ 1 & 2 - \lambda \\ \end{array} \right) = \left(\begin{array}{rr} 5- 4 & -2 \\ 1 & 2 - 4 \\ \end{array} \right) = \left(\begin{array}{rr} 1 & -2 \\ 1 & -2 \\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2 - R_1}} \left(\begin{array}{rr} 1 & -2 \\ 0 & 0 \\ \end{array} \right) \end{equation*}

This implies that \(x = 2y\), which in colmun vector notation gives

\begin{equation*} \vec{x} = \left(\begin{array}{rr} x \\ y \\ \end{array} \right) = \left(\begin{array}{rr} 2y \\ y \\ \end{array} \right) = y \left(\begin{array}{rr} 2 \\ 1 \\ \end{array} \right) \end{equation*}

Then, the eigenspace for the eigenvalue \(\lambda_2 = 4\) is given by \(\mbox{span}\{(2,1)\}\).

Example
Find the eigenvalues and eigenspace of the following matrix
\begin{equation*} A = \frac{1}{\sqrt{2}}\left(\begin{array}{rr} \sqrt{3} - 1 & -2 \\ 1 & \sqrt{3} + 1 \end{array} \right) = \left(\begin{array}{rr} \frac{\sqrt{3} - 1}{\sqrt{2}} & -\frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{\sqrt{3} + 1}{\sqrt{2}} \end{array} \right). \end{equation*}

We compute the characteristic polynomial:

\begin{equation*} \begin{split} p(\lambda) = \mbox{det}(A - \lambda) & = \left(\begin{array}{rr} \frac{\sqrt{3} - 1}{\sqrt{2}} - \lambda & -\frac{2}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{\sqrt{3} + 1}{\sqrt{2}} - \lambda \end{array} \right| \\ & = \frac{1}{2}\left( (\sqrt{3} - \sqrt{2}\lambda - 1) (\sqrt{3} - \sqrt{2}\lambda + 1) \right) + 1\\ & = \frac{1}{2}\left((\sqrt{3} - \sqrt{2}\lambda)^2 -1\right) + 2 \\ & = \frac{1}{2}\left(3 - 2\sqrt{3}\sqrt{2}\lambda + 2\lambda^2 -1\right) + 2 \\ & = \frac{1}{2}\left( 2\lambda^2 - 2\sqrt{3}\sqrt{2}\lambda + 2\right) + 2 \\ & = \lambda^2 - \sqrt{3}\sqrt{2}\lambda + 3 \\ & = \lambda^2 - \sqrt{6}\lambda + 3 \\ \end{split} \end{equation*}

Now, we solve the characteristic equation

\begin{equation*} p(\lambda) = 0, \end{equation*}

using the general formula, giving us:

\begin{equation*} \lambda = \frac{\sqrt{6} \pm \sqrt{6 - 12}}{2} = \frac{\sqrt{6} \pm \sqrt{-6}}{2}= \frac{\sqrt{6} \pm \sqrt{6} i}{2}. \end{equation*}

As we can see in this case, the eigenvalues are complex numbers.

Diagonalizable matrix

A square matrix \(A\) is called diagonalizable if there exists an invertible matrix \(P\) such that the matrix

\begin{equation} D = P A P^{-1}, \end{equation}

is diagonal.

Example In this example we will show a diagonalisation process for the matrix

\begin{equation} A = \left( \begin{array}{ccc} -1 & -3 & -3\\ 3 & 5 & 3 \\ -1 & -1 & 1\\ \end{array} \right). \end{equation}

First, we compute the characteristic polynomial

\begin{equation} \begin{split} p(\lambda) & = | A - \lambda I| \\ & = \left| \begin{array}{ccc} -1-\lambda & -3 & -3\\ 3 & 5 -\lambda & 3 \\ -1 & -1 & 1 -\lambda\\ \end{array} \right| \\ & = (-1-\lambda) \left( (5 -\lambda)(1 -\lambda) - 3(-1)\right) + 3 \left( 3 (1 - \lambda) + 3\right) -3 \left(-3 + 5 - \lambda \right) \\ & = (-1-\lambda) \left( (5 -\lambda)(1 -\lambda) + 3 \right) + 9 \left( 2 - \lambda\right) -3 \left( 2 - \lambda \right) \\ & = (-1-\lambda) \left( 8 - 6 \lambda + \lambda^2 \right) + 6 \left( 2 - \lambda\right) \\ & = (-1-\lambda) (4 - \lambda)(2-\lambda) + 6 \left( 2 - \lambda\right) \\ & = [(-1-\lambda) (4 - \lambda) + 6] \left( 2 - \lambda\right) \\ & = [-4 + \lambda - 4\lambda + \lambda^2 + 6] \left( 2 - \lambda\right) \\ & = [2 - 3\lambda + \lambda^2] \left( 2 - \lambda\right) \\ & = (2 - \lambda)(1-\lambda) \left( 2 - \lambda\right) \\ & = (2 - \lambda)^2(1-\lambda). \end{split} \end{equation}

Second, we have that the eigenvalues are \(\lambda =1\) and \(\lambda=2\).

Third, we compute the eigen-vectors and the corresponding eigen-spaces. We start with \(\lambda = 1\),

\begin{equation} \begin{split} \left( \begin{array}{ccc} -1-\lambda & -3 & -3\\ 3 & 5 -\lambda & 3 \\ -1 & -1 & 1 -\lambda\\ \end{array} \right) = \left( \begin{array}{ccc} -1-1 & -3 & -3\\ 3 & 5 -1 & 3 \\ -1 & -1 & 1 -1\\ \end{array} \right) & = \left( \begin{array}{ccc} -2 & -3 & -3\\ 3 & 4 & 3 \\ -1 & -1 & 0\\ \end{array} \right) \\ & \overrightarrow{\tiny{R_1 \leftrightarrow R_3 \\ R_1 \to - R_1}} \left( \begin{array}{ccc} 1 & 1 & 0\\ 3 & 4 & 3 \\ -2 & -3 & -3\\ \end{array} \right) \overrightarrow{\tiny{R_2 \to R_2- 3R_1 \\ R_3 \to R_3 + 2R_1}} \left( \begin{array}{ccc} 1 & 1 & 0\\ 0 & 1 & 3 \\ 0 & -1 & -3\\ \end{array} \right) \\ & \overrightarrow{\tiny{ R_1 \to R_1 - R_2 \\ R_3 \to R_3 + R_2}} \left( \begin{array}{ccc} 1 & 0 & -3\\ 0 & 1 & 3 \\ 0 & 0 & 0\\ \end{array} \right) \end{split} \end{equation}

Form this we conclude that the eigenspace corresponding to the eigenvalue \(\lambda = 1\), consists of the vectors

\begin{equation} (x_1, x_2, x_3 ) = (3x_3, -3x_3, x_3) = x_3 (3,-3,1). \end{equation}

In a similar way, for \(\lambda = 2\) we have

\begin{equation} \begin{split} \left( \begin{array}{ccc} -1-\lambda & -3 & -3\\ 3 & 5 -\lambda & 3 \\ -1 & -1 & 1 -\lambda\\ \end{array} \right) = \left( \begin{array}{ccc} -1-2 & -3 & -3\\ 3 & 5 -2 & 3 \\ -1 & -1 & 1 -2\\ \end{array} \right) = \left( \begin{array}{ccc} -3 & -3 & -3\\ 3 & 3 & 3 \\ -1 & -1 & -1\\ \end{array} \right) \overrightarrow{\tiny{ R_1 \to R_1 - 3R_3 \\ R_2 \to R_2 + 3R_3 \\ R_3 \to -R_3 \\ R_1 \leftrightarrow R_3}} \left( \begin{array}{ccc} 1 & 1 & 1\\ 0 & 0 & 0 \\ 0 & 0 & 0\\ \end{array} \right) \end{split} \end{equation}

Then

\begin{equation} (x_1, x_2, x_3) = (-x_2 - x_3, x_2, x_3) = (-x_2, x_2, 0) + (-x_3, 0, x_3) = x_2 (-1,1,0) + x_3(-1,0,1), \end{equation}

which implies that the eigenspace corresponding to \(\lambda =2\) is spanned by the vectors \((-1,1,0)\) and \((-1,0,1)\).

The matrix \(P\) consists of the column vectors \((3,-3,1)\), \((-1,1,0)\) and \((-1,0,1)\) :

\begin{equation} P = \left( \begin{array}{ccc} 3 & -1 & -1\\ -3 & 1 & 0 \\ 1 & 0 & 1\\ \end{array} \right). \end{equation}

As an exercise one can verify that the inverse is the matrix

\begin{equation} P^{-1} = \left( \begin{array}{ccc} 1 & 1 & 1\\ 3 & 4 & 3 \\ -1 & -1 & 0\\ \end{array} \right). \end{equation}

And finally one can verify that the matrix \(D\) is the diagonal matrix having the eigenvalues in the diagonal (repeated according to the multiplicity)

\begin{equation} D = P^{-1} A P = \left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 2 & 0 \\ 0 & 0 & 2\\ \end{array} \right). \end{equation}

We notice that this example gives us some clue about the relationship between the multiplicities of the eigenvalues as roots of the characteristic polynomial, and the dimension of the corresponding eigenspaces. We can also notice that the matrix \(P\) in general is not unique. We are also left with the general question of when is a matrix diagonalizable.

References

[1] H. Anton, and C. Rorres. Elementary Linear Algebra: Applications Version. Wiley, Eleventh edition, 2014.

[2] K. Hoffman, and R. Kunze. Linear Algebra. Prentice-Hall, Inc., Second edition, 1971.

[3] R. Horn, and C. Johnson. Matrix Analysis. Cambridge University Press, 1990.

[4] J. Ger. Kurs matematyki dla chemików (in Polish). Wydawnictwo Uniwersytetu Śląskiego, 2018.